Mathematical modeling uncovers mysteries of HIV infection in the brain

June 19, 2017 by Katie Willis
An HIV-infected cell. Credit: NIAID

After uncovering the progression of HIV infection in the brain thanks to a new mathematical model developed by a UAlberta research team, clinicians and researchers are developing a nasal spray to administer drugs more effectively.

The group that developed the —led by PhD student Weston Roda and Michael Li, a professor in the Department of Mathematical and Statistical Sciences—used data from patients who died five to 15 years after they were infected, as well as known biological processes for the HIV virus to build the model that predicts the growth and progression of HIV in the , from the moment of infection onward. It is the first model of an infectious disease in the brain.

HIV infection in the brain has been a proverbial black box for scientists since the development of in the 1990s.

"The nature of the HIV virus allows it to travel across the blood-brain barrier in infected macrophage—or white blood cell—as early as two weeks after infection. Antiretroviral drugs, the therapy of choice for HIV, cannot enter the brain so easily," said Roda.

This creates what is known as a viral reservoir, a place in the body where the virus can lay dormant and is relatively inaccessible to drugs. Prior to this study, scientists could only study brain infection at autopsy. The new model allows scientists to backtrack, seeing the progression and development of HIV infection in the brain. Using this information, researchers can determine what level of effectiveness is needed for antiretroviral therapy in the brain to decrease active infection.

"The more we understand and can target treatment toward viral reservoirs, the closer we get to developing total suppression strategies for HIV ," said Roda. In fact, his results are already being put to use in a University of Alberta lab.

A research team led by Chris Power, Roda's co-supervisor who is a professor in the Division of Neurology, is planning clinical trials for a that would get the drugs into the brain faster—with critical information on dosage and improvement rate provided by Roda's model.

"Our next steps are to understand other viral reservoirs, like the gut, and develop models similar to this one, as well as understand latently infected cell populations in the brain," said Roda. "With the antiretroviral therapy, infected cells can go into a latent stage. The idea is to determine the size of the latently infected population so that clinicians can develop treatment strategies"

The paper, "Modeling brain lentiviral infections during antiretroviral therapy in AIDS," was published in the Journal of Neurovirology.

Explore further: Researchers identify a new HIV reservoir

Related Stories

Researchers identify a new HIV reservoir

April 17, 2017
HIV cure research to date has focused on clearing the virus from T cells, a type of white blood cell that is an essential part of the immune system. Yet investigators in the Division of Infectious Diseases at the University ...

Researchers identify immune component up-regulated in brain after viral infection

June 8, 2017
A new study of infection by a virus that causes brain inflammation and seizures in a mouse model has shown increased levels of complement component C3. The C3 was produced by immune cells in the brain called microglia within ...

Study observes potential breakthrough in treatment of HIV

June 17, 2016
A new study conducted by researchers at the San Francisco VA Medical Center (SFVAMC) observes that pharmacological enhancement of the immune systems of HIV patients could help eliminate infected cells, providing an important ...

Designed drug candidate significantly reduces HIV reactivation rate

July 8, 2015
HIV-infected patients remain on antiretroviral therapy for life because the virus survives over the long-term in infected dormant cells. Interruption of current types of antiretroviral therapy results in a rebound of the ...

Researchers prove HIV targets tissue macrophages

March 8, 2016
Investigators in the Division of Infectious Diseases at the University of North Carolina School of Medicine have clearly demonstrated that HIV infects and reproduces in macrophages, large white blood cells found in the liver, ...

Mouse model reveals extensive postnatal brain damage caused by Zika infection

November 22, 2016
A team of scientists led by researchers at the University of Georgia has developed a new mouse model that closely mimics fetal brain abnormalities caused by the Zika virus in humans.

Recommended for you

New injectable antiretroviral treatment proved to be as effective as standard oral therapy

August 3, 2017
Intramuscularly administered antiretroviral therapy (ART) may be as effective for HIV treatment as current oral therapies. This is the main conclusion of a Phase II clinical trial carried out by 50 research centers around ...

Research finds home-based kit would increase HIV testing

July 31, 2017
Research led by William Robinson, PhD, Associate Research Professor of Behavioral & Community Health Sciences at LSU Health New Orleans School of Public Health, has found that 86% of heterosexuals who are at high risk for ...

Scientists divulge latest in HIV prevention

July 25, 2017
A far cry from the 1990s "ABC" campaign promoting abstinence and monogamy as HIV protection, scientists reported on new approaches Tuesday allowing people to have all the safe sex they want.

Girl's HIV infection seems under control without AIDS drugs

July 24, 2017
A South African girl born with the AIDS virus has kept her infection suppressed for more than eight years after stopping anti-HIV medicines—more evidence that early treatment can occasionally cause a long remission that, ...

Meds by monthly injection might revolutionize HIV care (Update)

July 24, 2017
Getting a shot of medication to control HIV every month or two instead of having to take pills every day could transform the way the virus is kept at bay.

Candidate AIDS vaccine passes early test

July 24, 2017
The three-decade-old quest for an AIDS vaccine received a shot of hope Monday when developers announced that a prototype triggered the immune system in an early phase of human trials.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.