Newly discovered cellular pathway may lead to cancer therapies

June 15, 2017, Baylor College of Medicine

Scientists have discovered a new cellular pathway that can promote and support the growth of cancer cells. In a mouse model of melanoma, blocking this pathway resulted in reduction of tumor growth. The study, which appears in Science, offers a novel opportunity to develop drugs that could potentially inhibit this pathway in human cancer cells and help control their growth.

"We had been studying components of this pathway for several years," said senior author Dr. Andrea Ballabio, professor of molecular and human genetics at Baylor College of Medicine and Texas Children's Hospital in Houston, Texas, and director of the Telethon Institute of Genetics and Medicine in Naples, Italy. "We know that the pathway is important for normal to carry their activities as it is involved in regulating metabolism, that is, how cells process nutrients to obtain energy and how cells use energy to grow. In this study we wanted to learn more about how the pathway regulates its activity."

Pathways involved in cellular metabolism typically regulate themselves, meaning that some components of the pathway control each other's activities. "We suspected that the pathway was autoregulated, and we confirmed it in this study. Our experimental approaches showed that there is a feedback loop within the path that allows it to control itself."

An important pathway for normal cellular activities

Ballabio and his colleagues studied the role of the pathway in two normal cellular activities; how cells respond to physical exercise and how they respond to nutrient availability. In terms of physical exercise, the researchers determined that the self-regulating mechanism they discovered is essential for the body builder effect.

"Some athletes take the aminoacid leucine or a mixture of aminoacids immediately after exercising, which promotes protein synthesis that leads to muscle growth. This is the body builder effect," Ballabio said. "When we genetically engineered mice to lack the pathway, we lost the body builder effect."

The researchers had a group of normal mice and another of mice lacking the pathway. Both groups were set to exercise and fed leucine immediately after. While normal mice showed enhanced , the mice without the pathway did not.

"In healthy organisms, this pathway also allows cells to adapt more efficiently to ," Ballabio said. "For example, when transitioning from a period of starvation to one in which food is available, cells need to switch from catabolism to anabolism. Starvation promotes catabolism - the breakdown of nutrients to obtain energy to function - and eating promotes anabolism - the buildup of molecules, such as proteins. The feedback we discovered mediates the switch from catabolism to anabolism, allowing organisms to adapt to food availability."

An important pathway for cancer growth

The scientists also studied the role this pathway might play in . They discovered that overactivation of this pathway, which is observed in some types of cancer such as renal cell carcinoma, melanoma and pancreatic cancer, is important to promote and support the growth of cancer cells in culture and animal models.

"Most importantly, we demonstrated in our study that blocking the pathway resulted in reduction of tumor growth in an experimental model of human melanoma transplanted into mice," Ballabio said. "I am most excited about the future potential therapeutic applications of this discovery against cancer. Developing pharmacological treatments that interfere with this pathway might one day help stop ."

Rare disease discoveries can improve our understanding of common diseases

"Our lab focuses on , such as lysosomal storage genetic disorders, in which we originally studied this pathway," Ballabio said. "Then, we discovered that the is also important in cancer. Our and other researchers' work on rare genetic diseases sometimes produces findings that can potentially be applicable to more common diseases, such as ."

Explore further: How to reap the benefits of exercise: It's in the genes

More information: "Transcriptional activation of RagD GTPase controls mTORC1 and promotes cancer growth," science.sciencemag.org/cgi/doi … 1126/science.aag2553

Related Stories

How to reap the benefits of exercise: It's in the genes

January 10, 2017
An international team of scientists at Baylor College of Medicine, the Telethon Institute of Genetics and Medicine in Naples, Italy and other institutions has discovered that the gene TFEB is a major regulator of muscle function ...

Study of blood vessel growth may open new pathway to therapies

May 4, 2017
A new Yale-led study detailing how blood vessels develop could lead to novel treatments of cardiovascular diseases as well as cancer.

Comprehensive cancer study assesses potential targets for personalized medicine and finds new ones

May 18, 2017
Looking to improve cancer treatment, a multi-institutional research team has taken a comprehensive approach to evaluating which molecular changes in cancer cells are most likely involved in the development of the disease. ...

Scientists discover metabolic pathway that drives tumor growth in aggressive cancers

March 2, 2017
Mount Sinai researchers have discovered that a rheumatoid arthritis drug can block a metabolic pathway that occurs in tumors with a common cancer-causing gene mutation, offering a new possible therapy for aggressive cancers ...

Blocking known cancer driver unexpectedly reveals a new tumor-promoting pathway

May 17, 2016
While investigating a potential therapeutic target for the ERK1 and 2 pathway, a widely expressed signaling molecule known to drive cancer growth in one third of patients with colorectal cancer, University of California San ...

Recommended for you

Function of neutrophils during tumor progression unraveled

October 15, 2018
Researchers at The Wistar Institute have characterized the function of neutrophils, a type of white blood cells, during early stages of tumor progression, showing that they migrate from the bone marrow to distant sites and ...

Delving where few others have gone, leukemia researchers open new path

October 15, 2018
A Wilmot Cancer Institute study uncovers how a single gene could be at fault in acute myeloid leukemia (AML), one of the deadliest cancers. The breakthrough gives researchers renewed hope that a gene-targeted therapy could ...

3-D mammography detected 34% more breast cancers in screening

October 15, 2018
In traditional mammography screening, all breast tissue is captured in a single image. Breast tomosynthesis, on the other hand, is three-dimensional and works according to the same principle as what is known as tomography. ...

More clues revealed in link between normal breast changes and invasive breast cancer

October 15, 2018
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process—changes in mammary glands to accommodate breastfeeding—uses a molecular process believed ...

Cancer stem cells use 'normal' genes in abnormal ways

October 12, 2018
CDK1 is a "normal" protein—its presence drives cells through the cycle of replication. And MHC Class I molecules are "normal" as well—they present bits of proteins on the surfaces of cells for examination by the immune ...

Obesity linked to increased risk of early-onset colorectal cancer

October 12, 2018
Women who are overweight or obese have up to twice the risk of developing colorectal cancer before age 50 as women who have what is considered a normal body mass index (BMI), according to new research led by Washington University ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.