Tweaking muscle metabolism prevents obesity and diabetes in mice

June 28, 2017, University of Iowa
Credit: Martha Sexton/public domain

Mildly stressing muscle metabolism boosts levels of a beneficial hormone that prevents obesity and diabetes in mice, according to a new study by researchers at the University of Iowa.

The new findings, published in the EMBO Journal, show that triggering a certain type of metabolic stress in mouse cells causes them to produce and secrete significant amounts of the anti-diabetic hormone called fibroblast growth factor-21 (FGF21), which then has widespread beneficial effects on whole-body metabolism. The in the experiments were completely protected from obesity and diabetes that normally develop due to aging or eating a high-fat diet. Moreover, triggering the FGF21 production after the mice had become obese and diabetic reversed these conditions and returned the mice to normal weight and blood sugar levels.

"There is a biological phenomenon known as hormesis where a little bit of stress a can be a good thing," says E. Dale Abel, MD, PhD, professor and DEO of internal medicine at the UI Carver College of Medicine and director of the Fraternal Order of Eagles Diabetes Research Center at the UI. "The general conclusion from our study is there is probably a sweet spot 'hormetically,' where creating a little bit of muscle stress could be of metabolic benefit."

Abel and his colleagues used genetic engineering to reduce levels of a mitochondrial protein called OPA1 in the muscles of mice. Mitochondria are tiny organelles that produce a cell's energy. This OPA1 deficiency disrupted muscle metabolism and caused a small amount of muscle loss in the mice.

Despite the mild muscle atrophy, which did decrease grip strength, the older mice with OPA1 deficiency had greater endurance on the treadmill than older control mice. In addition, activity levels and energy expenditure that normally decline in mice as they age were preserved in OPA1 deficient mice.

Interestingly, the altered mice also were completely protected from the weight gain and glucose intolerance that normally develop in mice as they age or when they eat a high-fat diet. Moreover, the research team showed that reducing OPA1 levels in muscle, after mice had become obese and diabetic, reversed these problems - normalizing body weight and reversing glucose intolerance even though the high fat diet continued.

The team showed that these metabolic improvements correlated with increased levels of circulating FGF21, a hormone that has been shown to increase energy expenditure and insulin sensitivity. Abel and his team were able to prove that muscle was the source of the FGF21 by creating a mouse that had the OPA1 deficiency and also was missing the FGF21 gene in muscle. These mice were no longer able to produce FGF21 in muscle in response to OPA1 deficiency, and, just like , they became obese and developed diabetes.

"These experiments prove that muscle is the source of circulating FGF21 in the OPA1 deficient mice, and that muscle-derived FGF21 prevents diet-induced obesity and insulin resistance in these mice," Abel says. "If there is a way that muscle could be reprogrammed to make this hormone, then that could be of therapeutic benefit."

Further investigation demonstrated that the small degree of mitochondrial stress induced in muscle by the reduction of OPA1 is sufficient to activate another cellular stress response pathway called endoplasmic reticulum (ER) stress, which then dramatically increases FGF21 levels.

"The follow up work on this will be understanding how a little bit of mitochondrial stress can actually increase the ER stress response and if we can mimic that safely," Abel says. "There are agents that have been used to activate ER stress pathways. So, I think the opportunity here would be to find ways to turn on this pathway in a very controlled way to get enough of this subsequent FGF21 response in muscle to be of benefit."

Returning to the idea of a "sweet spot" for this -induced production of FGF21, Abel notes that other researchers have shown that complete loss of OPA1 pushed the pathway too far and resulted in fatal muscle atrophy in mice.

"Like everything else, this effect can be a two-edged sword, and too much of a good thing can be bad," he says "For this to be therapeutically useful, we want to be able to create the effect to the point where we get the benefit but not to overdo it."

Explore further: Life-extending hormone bolsters the body's immune function

More information: Renata Oliveira Pereira et al, OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance, The EMBO Journal (2017). DOI: 10.15252/embj.201696179

Related Stories

Life-extending hormone bolsters the body's immune function

January 11, 2016
A hormone that extends lifespan in mice by 40% is produced by specialized cells in the thymus gland, according to a new study by Yale School of Medicine researchers. The team also found that increasing the levels of this ...

Skeletal muscle TRIB3 mediates diet-induced insulin resistance

May 18, 2016
(HealthDay)—Skeletal muscle TRIB3 mediates glucose-induced insulin resistance (GIIR) in a mouse model of diabetes, according to a study published online May 10 in Diabetes.

One step closer to an 'exercise pill'

April 25, 2017
Suppressing production of the protein myostatin enhances muscle mass and leads to significant improvements in markers of heart and kidney health, according to a study conducted in mice. Joshua T. Butcher, PhD, a postdoctoral ...

Study identifies liver-generated hormone that regulates 'sweet tooth'

December 24, 2015
We all love our sugar, especially during the holidays. Cookies, cake, and candy are simply irresistible.

FGF21 hormone, key to control obesity, also protects against heart diseases in mice

June 18, 2013
A research group has found that FGF21, an endocrine factor which reduces glucose levels, protects against cardiac diseases in mice. The research, published online on the journal Nature Communications, was led by Francesc ...

A high-fat diet may alleviate mitochondrial disease

June 30, 2015
Mice that have a genetic version of mitochondrial disease can easily be mistaken for much older animals by the time they are nine months old: they have thinning grey hair, osteoporosis, poor hearing, infertility, heart problems ...

Recommended for you

New blood test to detect liver damage in under an hour

May 24, 2018
A quick and robust blood test that can detect liver damage before symptoms appear has been designed and verified using clinical samples by a team from UCL and University of Massachusetts.

Selective neural connections can be reestablished in retina after injury, study finds

May 24, 2018
The brain's ability to form new neural connections, called neuroplasticity, is crucial to recovery from some types of brain injury, but this process is hard to study and remains poorly understood. A new study of neural circuit ...

Space-like gravity weakens biochemical signals in muscle formation

May 23, 2018
Astronauts go through many physiological changes during their time in spaceflight, including lower muscle mass and slower muscle development. Similar symptoms can occur in the muscles of people on Earth's surface, too. In ...

Eating at night, sleeping by day swiftly alters key blood proteins

May 21, 2018
Staying awake all night and sleeping all day for just a few days can disrupt levels and time of day patterns of more than 100 proteins in the blood, including those that influence blood sugar, energy metabolism, and immune ...

Hotter bodies fight infections and tumours better—researchers show how

May 21, 2018
The hotter our body temperature, the more our bodies speed up a key defence system that fights against tumours, wounds or infections, new research by a multidisciplinary team of mathematicians and biologists from the Universities ...

Deep space radiation treatment reboots brain's immune system

May 21, 2018
Planning a trip to Mars? You'll want to remember your anti-radiation pills.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.