Competition for survival signals maintains immune balance

July 26, 2017, Institute for Basic Science
Light-hearted representation: Competition for survival. The recently discovered and ultra-rare immune cells innate lymphoid cells (ILCs, in gray) outcompete and exert a measurable control on the survival of the abundant T-cells (pink). This is possible because T cells decrease the number of IL-7 receptors (IL-7R, represented as butterfly nets) after binding IL-7, while ILCs do not. Credit: modified from freepiks.com

According to a new study published in the journal Immunity, two types of immune cells compete for a shared source of proteins that allow them to survive. The "contestants" are the recently discovered and ultra-rare innate lymphoid cells (ILCs) and the abundant T cells: ILCs are more effective. Director of the Academy of Immunology and Microbiology (AIM) in Institute for Basic Science (IBS), Charles D. Surh, led this international effort with researchers from La Jolla Institute for Allergy and Immunology and The Scripps Research Institute. These findings could promote our understanding of immune memory in vaccines and aging.

The study of the immune system has produced many life-saving discoveries, the greatest of which is arguably the concept of immunization and immunological memory. Vaccines protect us by providing specific stimulation of immune cells populations; B and T cells. The ingredients of vaccines are relatively short-lived, but the protective effects of the vaccine can last for many decades because of a complex phenomenon, called homeostasis, that support the upkeep of a constant reservoir of immune cells. The homeostatic survival of B and T cells is not only important after vaccination, but also in old age when production of B and T cells slows and we are heavily reliant on the long-term survival of immune cells we created when we were young.

In order to survive, these immune cells need to bind to a protein called interleukin-7 (IL-7) via the IL-7 receptor (IL-7R) lying on their surface. However, it is unclear how the body regulates the amount of IL-7 made available. The question was compounded by the difficulty of measuring IL-7 levels in vivo: traditional methods of immunohistochemistry or immunofluorescence were woefully inadequate to even detect, let alone quantify, IL-7 in laboratory mouse tissue.

The first breakthrough of this study was made possible due to the expertise cultivated in Surh's lab over several decades in characterizing the homeostatic T cell proliferation in mice. Their scientists used mice lacking the IL-7R so that IL-7 could accumulate to supraphysiogical levels, sufficient to drive T cell homeostatic proliferation. Then, the group replaced various IL-7R-expressing cell types and monitored for a return of IL-7 homeostasis. The results clearly indicated that T cells were not the only consumers of IL-7, ILCs do it too. ILCs are a recently discovered class of that have been shown to be involved in the resistance to pathogens, tissue remodeling, and .

Technical explanation: IL7 receptor (IL-7R) expression is regulated differently in T cells and innate lymphoid cells. In T cells, IL-7 binding to IL-7R leads to the reduction of FOXO1 transcription factor, necessary for the expression of IL-7Ra subunit, by down-regulating foxo1 gene expression and enhancing the degradation of FOXO1 protein through the phosphorylation of FOXO1. However, in innate lymphoid cells, these signaling pathways are not efficiently activated, leading to the sustained expression of IL-7R in the presence of IL-7. Credit: Institute for Basic Science

"To be honest, I was quite surprised that ILCs have such an effect in this model," said lead author, Christopher Martin. "Relative to T cells, there are very few ILCs in the tissues we study. So, when we were designing the initial experiments, we weren't optimistic that we would find anything interesting."

The second pivotal set of discoveries were made possible by the facilities and expertise unique to the Academy of Immunology and Microbiology in South Korea. The state-of-the-art germ-free mouse research facility allowed the team to show that ILCs compete for IL-7 independent of commensal bacteria.

Finally, work led by the young investigator KIM Kwang Soon demonstrated the molecular mechanism that explains why the ultra-rare ILCs are more effective than the abundant T cells in consuming IL-7. This is possible because T cells decrease the number of IL-7Rs after binding IL-7, while ILCs do not.

"The findings are not only of interest to the esoteric field of immune homeostasis, but also to the broad biological community because they are a stark reminder that life exists as a complex concert and not as a collection of various types of that merely just co-exist," concludes Charles D. Surh.

The biological significance of this competition for a shared source of survival stimuli, remains to be explained.

Explore further: Characterization of innate lymphoid cells with an advanced cytometric technique yields surprising insights

More information: Christopher E. Martin et al. Interleukin-7 Availability Is Maintained by a Hematopoietic Cytokine Sink Comprising Innate Lymphoid Cells and T Cells, Immunity (2017). DOI: 10.1016/j.immuni.2017.07.005

Related Stories

Characterization of innate lymphoid cells with an advanced cytometric technique yields surprising insights

June 14, 2017
A family of cells key to the immune system's frontline defenses has been described in greater detail than ever before. A*STAR researchers hope their analysis will help those seeking to target them to treat disease.

Scientists discover how obesity stops 'guardian immune cells' from doing their job

March 2, 2017
Scientists have uncovered the physiological mechanics underlying inflammation and obesity by tracking the actions of 'guardian immune cells' in response to changes in diet. They believe their work may herald a new era of ...

Immunologists discover immune system precursor cells that fight infection

May 27, 2014
The innate immune system recognizes infectious agents such as viruses and bacteria. A group of lymphocytes known as "innate lymphoid cells" or ILCs plays a central role in the defense of the human body against infective agents. ...

New subgroups of ILC immune cells discovered through single-cell RNA sequencing

February 15, 2016
A relatively newly discovered group of immune cells known as ILCs have been examined in detail in a new study published in the journal Nature Immunology. By analysing the gene expression in individual tonsil cells, scientists ...

Newly described type of immune cell and T cells share similar path to maturity, according to new study

May 14, 2013
(Medical Xpress)—Labs around the world, and a core group at Penn, have been studying recently described populations of immune cells called innate lymphoid cells (ILCs). Some researchers liken them to foot soldiers that ...

Researchers uncover new piece of the HIV puzzle

February 3, 2016
New research has revealed that a key immune system component—innate lymphoid cells (ILC)—is destroyed during acute HIV infection. This may play a key role in understanding the progression of the disease from HIV to AIDS. ...

Recommended for you

Organs are not just bystanders, may be active participants in fighting autoimmune disease

September 24, 2018
Organs affected by autoimmune disease could be fighting back by "exhausting" immune cells that cause damage using methods similar to those used by cancer cells to escape detection, according to a study by researchers at the ...

Exposure to farmyard bugs reduces immune overreaction found in childhood asthma

September 24, 2018
Treating new born mice with farmyard microbes reduces wheezing and inflammation in the airways, by 'taming' their immune systems.

A Trojan Horse delivery for treating a rare, potentially deadly, blood-clotting disorder

September 21, 2018
In proof-of-concept experiments, University of Alabama at Birmingham researchers have highlighted a potential therapy for a rare but potentially deadly blood-clotting disorder, TTP. The researchers deliver this therapeutic ...

Study shows surprise low-level ozone impact on asthma patients

September 21, 2018
A new study led by UNC School of Medicine researchers indicates that ozone has a greater impact on asthma patients than previously thought. The study, published in the Journal of Allergy and Clinical Immunology, recruited ...

Cancer immunotherapy might benefit from previously overlooked immune players

September 20, 2018
Cancer immunotherapy—efforts to boost a patient's own immune system, allowing it to better fight cancer cells on its own—has shown great promise for some previously intractable cancers. Yet immunotherapy doesn't work ...

Gut fungus exacerbates asthma in antibiotic-treated mice

September 20, 2018
A non-pathogenic fungus can expand in the intestines of antibiotic-treated mice and enhance the severity of allergic airways disease, according to a study published September 20 in the open-access journal PLOS Pathogens by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.