Using a microRNA to shift the makeup of glioblastoma subtypes

July 13, 2017, Brigham and Women's Hospital

Glioblastoma multiforme (GBM), an extremely aggressive brain cancer, is a very complex disease. It is characterized by a fast-growing tumor in the brain composed of many subpopulations of cells, including glioblastoma stem cells, which play a crucial role in glioblastoma initiation, expansion and therapy-resistance. GBM's diverse make up - termed heterogeneity - is of clinical importance because it is a key factor that leads to treatment failure, allowing the tumor to become resistant to treatment or for cancer to recur.

One way to identify different glioblastoma subtypes is by looking at the specific microRNA expressed in the patient derived GBM stem cells. In several types of cancer cells, including glioblastoma cells, microRNA expression isn't regulated properly. In a new study published in Cell Reports, BWH researchers examined a specific microRNA, miR-128, to help identify glioblastoma subtypes and to determine if altering the microRNA's presence in glioblastoma cells could change the 's subtype.

"RNA is increasingly recognized as a snapshot of a cell at a given moment in time and therefore gives unique insight into the disease biology," said lead author Arun Kumar Rooj, PhD, of the Department of Neurosurgery at BWH. "Understanding the dynamic spectrum of and their non-coding RNA signatures is critical for advancing therapeutic strategies that will be capable of overcoming the complexity of this disease."

The researchers looked at miR-128 expression in diverse populations of . They identified the "proneural" subtype as having high levels of miR-128 compared to the mesenchymal tumors, which had significantly lower levels of this particular microRNA. Interestingly, they also found that if they raised or lowered the levels of miR-128, they could induce one subtype of tumor to transition into a new subtype.

"Mesenchymal glioblastoma is extremely aggressive, highly heterogeneous and has the poorest chance of survival for patients," said corresponding author Agnieszka Bronisz, PhD, of the BWH Department of Neurosurgery. "By altering the level of miR-128 in both mesenchymal and proneural tumors, we can shift the tumor into a more hybrid type, similar to the "classical" subtype which is more homogenous and easier to treat."

"The ability to transform more aggressive types of into a subtype that is more responsive to treatment opens the door for using miR-128 as a therapeutic agent," said corresponding author Jakub Godlewski, PhD, of the BWH Department of Neurosurgery.

Explore further: Glioblastoma 'ecosystem' redefined for more effective immunotherapy trials

More information: Arun K. Rooj et al, MicroRNA-Mediated Dynamic Bidirectional Shift between the Subclasses of Glioblastoma Stem-like Cells, Cell Reports (2017). DOI: 10.1016/j.celrep.2017.05.040

Related Stories

Glioblastoma 'ecosystem' redefined for more effective immunotherapy trials

July 10, 2017
A research team has revealed the intrinsic gene expression patterns of glioblastoma (GBM) tumors, insights that could drive more effective treatments for GBM, the most common and deadly malignant primary brain tumors in adults.

Clinical study suggests the origin of glioblastoma subtypes

May 5, 2016
Researchers at University of California San Diego School of Medicine have demonstrated that distinct types of glioblastoma, the most common form of brain cancer in adults, tend to develop in different regions of the brain. ...

Metabolic molecule drives growth of aggressive brain cancer

June 13, 2013
(Medical Xpress)—A study led by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) has identified an abnormal ...

Innate immune landscape in glioblastoma patient tumors

February 25, 2016
Glioblastoma is an extremely aggressive brain tumor with limited treatment options. Recent progress in using immunotherapy-based treatment options in other tumor types has spurred interest in developing approaches that might ...

Brain cancer study reveals therapy clues

May 10, 2017
Researchers have pinpointed two key molecules that drive the growth of an aggressive type of adult brain cancer.

Recommended for you

Scientists discover new method of diagnosing cancer with malaria protein

August 17, 2018
In a spectacular new study, researchers from the University of Copenhagen have discovered a method of diagnosing a broad range of cancers at their early stages by utilising a particular malaria protein that sticks to cancer ...

Researchers find pathways that uncover insight into development of lung cancer

August 17, 2018
Lung cancer is the leading cause of preventable cancer death. A disease of complex origin, lung cancer is usually considered to result from effects of smoking and from multiple genetic variants. One of these genetic components, ...

Developing an on-off switch for breast cancer treatment

August 17, 2018
T-cells play an important role in the body's immune system, and one of their tasks is to find and destroy infection. However, T-cells struggle to identify solid, cancerous tumors in the body. A current cancer therapy is using ...

Pregnant? Eating broccoli sprouts may reduce child's chances of breast cancer later in life

August 16, 2018
Researchers at the University of Alabama at Birmingham have found that a plant-based diet is more effective in preventing breast cancer later in life for the child if the mother consumed broccoli while pregnant. The 2018 ...

Three scientists share $500,000 prize for work on cancer therapy

August 15, 2018
Tumors once considered untreatable have disappeared and people previously given months to live are surviving for decades thanks to new therapies emerging from the work of three scientists chosen to receive a $500,000 medical ...

PARP inhibitor improves progression-free survival in patients with advanced breast cancers

August 15, 2018
In a randomized, Phase III trial led by researchers at The University of Texas MD Anderson Cancer Center, the PARP inhibitor talazoparib extended progression-free survival (PFS) and improved quality-of-life measures over ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.