Using a microRNA to shift the makeup of glioblastoma subtypes

July 13, 2017, Brigham and Women's Hospital

Glioblastoma multiforme (GBM), an extremely aggressive brain cancer, is a very complex disease. It is characterized by a fast-growing tumor in the brain composed of many subpopulations of cells, including glioblastoma stem cells, which play a crucial role in glioblastoma initiation, expansion and therapy-resistance. GBM's diverse make up - termed heterogeneity - is of clinical importance because it is a key factor that leads to treatment failure, allowing the tumor to become resistant to treatment or for cancer to recur.

One way to identify different glioblastoma subtypes is by looking at the specific microRNA expressed in the patient derived GBM stem cells. In several types of cancer cells, including glioblastoma cells, microRNA expression isn't regulated properly. In a new study published in Cell Reports, BWH researchers examined a specific microRNA, miR-128, to help identify glioblastoma subtypes and to determine if altering the microRNA's presence in glioblastoma cells could change the 's subtype.

"RNA is increasingly recognized as a snapshot of a cell at a given moment in time and therefore gives unique insight into the disease biology," said lead author Arun Kumar Rooj, PhD, of the Department of Neurosurgery at BWH. "Understanding the dynamic spectrum of and their non-coding RNA signatures is critical for advancing therapeutic strategies that will be capable of overcoming the complexity of this disease."

The researchers looked at miR-128 expression in diverse populations of . They identified the "proneural" subtype as having high levels of miR-128 compared to the mesenchymal tumors, which had significantly lower levels of this particular microRNA. Interestingly, they also found that if they raised or lowered the levels of miR-128, they could induce one subtype of tumor to transition into a new subtype.

"Mesenchymal glioblastoma is extremely aggressive, highly heterogeneous and has the poorest chance of survival for patients," said corresponding author Agnieszka Bronisz, PhD, of the BWH Department of Neurosurgery. "By altering the level of miR-128 in both mesenchymal and proneural tumors, we can shift the tumor into a more hybrid type, similar to the "classical" subtype which is more homogenous and easier to treat."

"The ability to transform more aggressive types of into a subtype that is more responsive to treatment opens the door for using miR-128 as a therapeutic agent," said corresponding author Jakub Godlewski, PhD, of the BWH Department of Neurosurgery.

Explore further: Glioblastoma 'ecosystem' redefined for more effective immunotherapy trials

More information: Arun K. Rooj et al, MicroRNA-Mediated Dynamic Bidirectional Shift between the Subclasses of Glioblastoma Stem-like Cells, Cell Reports (2017). DOI: 10.1016/j.celrep.2017.05.040

Related Stories

Glioblastoma 'ecosystem' redefined for more effective immunotherapy trials

July 10, 2017
A research team has revealed the intrinsic gene expression patterns of glioblastoma (GBM) tumors, insights that could drive more effective treatments for GBM, the most common and deadly malignant primary brain tumors in adults.

Clinical study suggests the origin of glioblastoma subtypes

May 5, 2016
Researchers at University of California San Diego School of Medicine have demonstrated that distinct types of glioblastoma, the most common form of brain cancer in adults, tend to develop in different regions of the brain. ...

Metabolic molecule drives growth of aggressive brain cancer

June 13, 2013
(Medical Xpress)—A study led by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) has identified an abnormal ...

Innate immune landscape in glioblastoma patient tumors

February 25, 2016
Glioblastoma is an extremely aggressive brain tumor with limited treatment options. Recent progress in using immunotherapy-based treatment options in other tumor types has spurred interest in developing approaches that might ...

Brain cancer study reveals therapy clues

May 10, 2017
Researchers have pinpointed two key molecules that drive the growth of an aggressive type of adult brain cancer.

Recommended for you

Fully reprogrammed virus offers new hope as cancer treatment

May 25, 2018
A cancer treatment that can completely destroy cancer cells without affecting healthy cells could soon be a possibility, thanks to research led by Cardiff University.

Research could help fine-tune cancer treatment

May 25, 2018
Cancer therapies that cut off blood supply to a tumour could be more effective in combination with existing chemotherapeutic drugs—according to new research from the University of East Anglia.

Increasing physical activity linked to better immunity in breast cancer patients, study finds

May 25, 2018
A new study from the University of Toronto's Faculty of Kinesiology & Physical Education has found that moderate to vigorous physical activity may help regulate the levels of C-reactive protein – an important biomarker ...

Study finds gut microbiome can control antitumor immune function in liver

May 24, 2018
Scientists have found a connection between bacteria in the gut and antitumor immune responses in the liver. Their study, published May 25 in Science, was led by researchers in the Center for Cancer Research (CCR) at the National ...

Low-fat diet tied to better breast cancer survival

May 24, 2018
(HealthDay)—Breast cancer patients who adopted a low-fat diet were more likely to survive for at least a decade after diagnosis, compared to patients who ate fattier fare, new research shows.

A cascade of immune processes offers insights to triple-negative breast cancer

May 24, 2018
Cancer is crafty. To survive and thrive, tumors find a way of thwarting our body's natural systems.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.