Learning with music can change brain structure, study shows

July 6, 2017, University of Edinburgh
Credit: CC0 Public Domain

Using musical cues to learn a physical task significantly develops an important part of the brain, according to a new study.

People who practiced a basic movement task to showed increased structural connectivity between the regions of the brain that process sound and control movement.

The findings focus on white matter pathways—the wiring that enables brain cells to communicate with each other.

The study could have positive implications for future research into rehabilitation for patients who have lost some degree of control.

Thirty right-handed volunteers were divided into two groups and charged with learning a new task involving sequences of finger movements with the non-dominant, left hand. One group learned the task with musical cues, the other group without music.

After four weeks of practice, both groups of volunteers performed equally well at learning the sequences, researchers at the University of Edinburgh found.

Using MRI scans, it was found that the music group showed a significant increase in structural connectivity in the white matter tract that links auditory and motor regions on the right side of the brain. The non-music group showed no change.

Researchers hope that future study with larger numbers of participants will examine whether music can help with special kinds of motor rehabilitation programmes, such as after a stroke.

The interdisciplinary project brought together researchers from the University of Edinburgh's Institute for Music in Human and Social Development, Clinical Research Imaging Centre, and Centre for Clinical Brain Sciences, and from Clinical Neuropsychology, Leiden University, The Netherlands.

The results are published in the journal Brain & Cognition.

Dr Katie Overy, who led the research team said: "The study suggests that music makes a key difference. We have long known that music encourages people to move. This study provides the first experimental evidence that adding musical cues to learning new motor task can lead to changes in structure in the ."

Explore further: Uncovering why playing a musical instrument can protect brain health

More information: Emma Moore et al, Diffusion tensor MRI tractography reveals increased fractional anisotropy (FA) in arcuate fasciculus following music-cued motor training, Brain and Cognition (2017). DOI: 10.1016/j.bandc.2017.05.001

Related Stories

Uncovering why playing a musical instrument can protect brain health

June 1, 2017
A recent study conducted at Baycrest Health Sciences has uncovered a crucial piece into why playing a musical instrument can help older adults retain their listening skills and ward off age-related cognitive declines. This ...

Study shows people who aren't moved by music have less functional connectivity between some brain regions

November 9, 2016
(Medical Xpress)—A team of researchers from Spain and Canada has found evidence that suggests people who are not emotionally moved by music have less connectivity between the regions in the brain responsible for processing ...

The brain mechanism behind multitasking

June 21, 2017
Although "multitasking" is a popular buzzword, research shows that only 2% of the population actually multitasks efficiently. Most of us just shift back and forth between different tasks, a process that requires our brains ...

Early music lessons boost brain development, researchers find

February 12, 2013
If you started piano lessons in grade one, or played the recorder in kindergarten, thank your parents and teachers. Those lessons you dreaded – or loved – helped develop your brain. The younger you started music lessons, ...

Lack of joy from music linked to brain disconnection

January 4, 2017
Have you ever met someone who just wasn't into music? They may have a condition called specific musical anhedonia, which affects three-to-five per cent of the population.

Getting a leg up: Hand task training transfers motor knowledge to feet

March 30, 2017
The human brain's cerebellum controls the body's ability to tightly and accurately coordinate and time movements as fine as picking up a pin and as muscular as running a foot race. Now, Johns Hopkins researchers have added ...

Recommended for you

New neurons in the adult brain are involved in sensory learning

February 23, 2018
Although we have known for several years that the adult brain can produce new neurons, many questions about the properties conferred by these adult-born neurons were left unanswered. What advantages could they offer that ...

Neuroscientists discover a brain signal that indicates whether speech has been understood

February 22, 2018
Neuroscientists from Trinity College Dublin and the University of Rochester have identified a specific brain signal associated with the conversion of speech into understanding. The signal is present when the listener has ...

Study in mice suggests personalized stem cell treatment may offer relief for multiple sclerosis

February 22, 2018
Scientists have shown in mice that skin cells re-programmed into brain stem cells, transplanted into the central nervous system, help reduce inflammation and may be able to help repair damage caused by multiple sclerosis ...

Nolan film 'Memento' reveals how the brain remembers and interprets events from clues

February 22, 2018
Key repeating moments in the film give viewers the information they need to understand the storyline. The scenes cause identical reactions in the viewer's brain. The results deepen our understanding of how the brain functions, ...

Biomarker, clues to possible therapy found in novel childhood neurogenetic disease

February 22, 2018
Researchers studying a rare genetic disorder that causes severe, progressive neurological problems in childhood have discovered insights into biological mechanisms that drive the disease, along with early clues that an amino ...

A look at the space between mouse brain cells

February 22, 2018
Between the brain's neurons and glial cells is a critical but understudied structure that's been called neuroscience's final frontier: the extracellular space. With a new imaging paradigm, scientists can now see into and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.