Study identifies new target to preserve nerve function

July 14, 2017
Credit: CC0 Public Domain

Scientists in the Vollum Institute at OHSU have identified an enzyme that plays a crucial role in the degeneration of axons, the threadlike portions of a nerve cell that transmit signals within the nervous system. Axon loss occurs in all neurodegenerative diseases, so this discovery could open new pathways to treating or preventing a wide array of brain diseases.

The research team discovered a new role of the enzyme Axundead - or Axed - in promoting the self-destruction of . They found that when Axed was blocked, injured axons not only maintained their integrity but remained capable of transmitting signals within the brain's complex circuitry for weeks. Their research was published July 5 in the journal Neuron.

"If you target this pathway, you have a really good chance of preserving the functional aspects of neurons after a variety of types of trauma or injury," said senior author Marc Freeman, Ph.D., director of the Vollum Institute at OHSU. "It's a very attractive therapeutic target."

Freeman conducted the work in the Department of Neurobiology at the University of Massachusetts Medical School. He has since been recruited to head the Vollum Institute, which conducts cutting-edge basic research into how the nervous system works at a .

Severing axons, or axotomy, is a simple way to study the molecular basis of neurodegeneration as it leads to the activation of explosive . In the laboratory, researchers using this technique can identify pro-degenerative genes with great specificity, especially when using sophisticated genetic approaches in the fruit fly Drosophila, Freeman's primary research model organism. Drosophila shares these same pathways with humans. Previous work by Freeman's lab identified another enzyme, a gene called SARM, which was the first shown to activate a process that causes axons to disintegrate when damaged.

In the current study, Freeman and colleagues identified Axed, showed that it functions downstream of SARM to execute axonal degeneration, and, surprisingly, that the protection afforded by blocking Axed was even stronger than SARM.

"There was really nothing we could do to kill axons where Axed function was blocked," Freeman said.

From an evolutionary perspective, Freeman said SARM and Axed function are likely important in the peripheral nervous system after injury because programmed axon death allows for efficient packaging of damaged cellular materials for removal by immune cells. This process thereby clears the pathway for new neuronal processes to regrow, reinnervate tissues, and recover function.

From a therapeutic perspective, the goal of the work is to understand at the molecular level how axons degenerate, and block those pathways in patients to preserve nervous system function. In many nervous system injuries axons are not severed but become stretched or crushed, which activates the SARM-dependent death program and drives axon loss. In those cases, it's imperative to block SARM and Axed signaling to preserve axon integrity, and in turn neuronal function. At the same time, Freeman and others have shown that SARM-dependent signaling pathways also drive axon loss in neurodegenerative conditions including glaucoma, traumatic brain injury and peripheral neuropathy. This suggests the notion of an ancient and conserved axon death signaling pathway that is widely activated to drive axon loss. Since axon loss is a universal feature of neurodegenerative diseases, it seems likely that blocking this could have enormous therapeutic benefit.

"If we can find ways to block it, maybe we can preserve function in a wide array of patients who have lost axons through or other neural trauma," Freeman said.

Explore further: A fly mutation suggests a new route for tackling ALS

More information: Lukas J. Neukomm et al, Axon Death Pathways Converge on Axundead to Promote Functional and Structural Axon Disassembly, Neuron (2017). DOI: 10.1016/j.neuron.2017.06.031

Related Stories

A fly mutation suggests a new route for tackling ALS

April 8, 2013
A team of researchers, led by Marc Freeman, PhD, an early career scientist with the Howard Hughes Medical Institute and associate professor of neurobiology at the University of Massachusetts Medical School have discovered ...

Scientists identify first gene in programmed axon degeneration

June 7, 2012
Degeneration of the axon and synapse, the slender projection through which neurons transmit electrical impulses to neighboring cells, is a hallmark of some of the most crippling neurodegenerative and brain diseases such as ...

Axon regeneration in response to nervous system injury

May 4, 2017
Alexandra Byrne, PhD, assistant professor of neurobiology, is working to identify which genes control how the nervous system responds to injury. Specifically, the Byrne lab at UMMS is working to identify the genes that prevent ...

Researchers discover how neurons tell each other to die under trauma, disease

March 9, 2017
A major contributor to most neurological diseases is the degeneration of a wire-like part of nerve cells called an axon, which electrically transmits information from one neuron to another. The molecular programs underlying ...

Findings suggest ways to block nerve cell damage in neurodegenerative diseases

March 23, 2017
In many neurodegenerative conditions—Parkinson's disease, amyotrophic lateral sclerosis (ALS) and peripheral neuropathy among them—an early defect is the loss of axons, the wiring of the nervous system. When axons are ...

Study overturns seminal research about the developing nervous system

April 20, 2017
New research by scientists at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA overturns a long-standing paradigm about how axons—thread-like projections that connect cells in the ...

Recommended for you

Theory: Flexibility is at the heart of human intelligence

November 19, 2017
Centuries of study have yielded many theories about how the brain gives rise to human intelligence. Some neuroscientists think intelligence springs from a single region or neural network. Others argue that metabolism or the ...

Investigating patterns of degeneration in Alzheimer's disease

November 17, 2017
Alzheimer's disease (AD) is known to cause memory loss and cognitive decline, but other functions of the brain can remain intact. The reasons cells in some brain regions degenerate while others are protected is largely unknown. ...

Study may point to new treatment approach for ASD

November 17, 2017
Using sophisticated genome mining and gene manipulation techniques, researchers at Vanderbilt University Medical Center (VUMC) have solved a mystery that could lead to a new treatment approach for autism spectrum disorder ...

Neuroscientists find chronic stress skews decisions toward higher-risk options

November 16, 2017
Making decisions is not always easy, especially when choosing between two options that have both positive and negative elements, such as deciding between a job with a high salary but long hours, and a lower-paying job that ...

Paraplegic rats walk and regain feeling after stem cell treatment

November 16, 2017
Engineered tissue containing human stem cells has allowed paraplegic rats to walk independently and regain sensory perception. The implanted rats also show some degree of healing in their spinal cords. The research, published ...

Brain implant tested in human patients found to improve memory recall

November 15, 2017
(Medical Xpress)—A team of researchers with the University of Southern California and the Wake Forest School of Medicine has conducted experiments involving implanting electrodes into the brains of human volunteers to see ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.