Scientists find new method to fight malaria

July 6, 2017, The Francis Crick Institute
Credit: CDC

Scientists have discovered a new way to slow down malaria infections, providing a possible new target for antimalarial drugs. The team are already working with pharmaceutical companies to use this knowledge to develop new antimalarials - an important step in the battle against drug resistant malaria.

When invade red blood , they form an internal compartment in which they replicate many times before bursting out of the cell and infecting more cells. In order to escape red blood cells, the parasites have to break through both the internal compartment and the cell membrane using various proteins and enzymes.

Scientists at the Francis Crick Institute and The London School of Hygiene & Tropical Medicine have identified a key involved in this process. Disrupting this protein reduces the efficiency of parasite escape, slowing down the rate of infection. The research, published in PLOS Pathogens was funded by Cancer Research UK, the Medical Research Council and Wellcome.

"The parasite sits in its internal compartment inside the cell, surrounded by lots of proteins, a bit like a baby surrounded by amniotic fluid," says Mike Blackman, Group Leader at the Francis Crick Institute. "We focused on the most common protein, known as SERA5, assuming that it probably has an important role since there is so much of it."

The team used genetic tools to knock out the gene responsible for producing SERA5 in malaria parasites and then took time-lapse video of the cells under a microscope. They found that the parasites broke through the membranes faster than normal but many got stuck on their way out, meaning that they were less likely to invade other red blood cells.

"Malaria parasites don't survive for long outside red blood cells, so if they get stuck on their way out, they might die before they have a chance to infect another cell," says Christine Collins, researcher at the Francis Crick Institute and first-named author of the paper. "We found that parasites lacking SERA5 were about half as efficient as normal parasites at escaping and infecting new cells."

The team are now working with GSK to see if SERA5 or one of the enzymes that it controls could be a potential target.

"Drug resistant malaria is a huge problem, so there is a real push to develop new drugs that work in a different way," says Mike. "None of the current antimalarials work by preventing the parasites from escaping , so we think that the proteins and enzymes that help the parasites break free could be valuable new targets that we can design drugs for."

The paper 'The Plasmodium falciparum pseudoprotease SERA5 regulates the kinetics and efficiency of egress from host erythrocytes' is published in PLOS Pathogens.

Explore further: Anti-malaria drugs: Potential new target identified

More information: PLOS Pathogens (2017). DOI: 10.1371/journal.ppat.1006453

Related Stories

Anti-malaria drugs: Potential new target identified

June 14, 2017
A newly described protein could be an effective target for combatting drug-resistant malaria parasites. The protein, the transcription factor PfAP2-I, regulates a number of genes involved with the parasite's invasion of red ...

New studies show how malaria parasite grows and escapes from red blood cells

March 14, 2017
Two new studies from the Francis Crick Institute shed light on how the malaria parasite grows inside a host's red blood cells and breaks out when it's ready to spread to new host cells.

Malaria parasites 'walk through walls' to infect humans

March 28, 2017
Researchers have identified proteins that enable deadly malaria parasites to 'walk through cell walls' - a superpower that was revealed using the Institute's first insectary to grow human malaria parasites.

Genes linked to malaria parasites' ability to persist in the body

February 6, 2017
The ability of malaria parasites to persist in the body for years is linked to the expression of a set of genes from the pir gene family, scientists from the Francis Crick Institute and the Wellcome Trust Sanger Institute ...

Malaria parasites soften our cells' defenses in order to invade

April 3, 2017
Malaria parasites cause red blood cells to become bendier, helping the parasites to enter and cause infection, says a new study.

Malaria vaccine target's invasion partner uncovered

February 10, 2017
A team at the Wellcome Trust Sanger Institute has discovered how a promising malarial vaccine target - the protein RH5 - helps parasites to invade human red blood cells. Published today in Nature Communications, the study ...

Recommended for you

Dialysis patients at risk of progressive brain injury

December 10, 2018
Kidney dialysis can cause short-term 'cerebral stunning' and may be associated with progressive brain injury in those who receive the treatment for many years. For many patients with kidney failure awaiting a kidney transplant ...

PET scans to optimize tuberculosis meningitis treatments and personalize care, study finds

December 6, 2018
Although relatively rare in the United States, and accounting for fewer than 5 percent of tuberculosis cases worldwide, TB of the brain—or tuberculosis meningitis (TBM)—is often deadly, always hard to treat, and a particular ...

Silicosis is on the rise, but is there a therapeutic target?

December 6, 2018
Researchers from the CNRS, the University of Orléans, and the company Artimmune, in collaboration with Turkish clinicians from Atatürk University, have identified a key mechanism of lung inflammation induced by silica exposure, ...

Infectivity of different HIV-1 strains may depend on which cell receptors they target

December 6, 2018
Distinct HIV-1 strains may differ in the nature of the CCR5 molecules to which they bind, affecting which cells they can infect and their ability to enter cells, according to a study published December 6 in the open-access ...

Protecting cell powerhouse paves way to better treatment of acute kidney injury

December 6, 2018
For the first time, scientists have described the body's natural mechanism for temporarily protecting the powerhouses of kidney cells when injury or disease means they aren't getting enough blood or oxygen.

New study uncovers why Rift Valley fever is catastrophic to developing fetuses

December 5, 2018
Like Zika, infection with Rift Valley fever virus can go unnoticed during pregnancy, all the while doing irreparable—often lethal—harm to the fetus. The results of a new study, led by researchers at the University of ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.