T-cells lacking HDAC11 enzyme perform more effectively in destroying cancer cells

July 17, 2017
Electron microscopic image of a single human lymphocyte. Credit: Dr. Triche National Cancer Institute

Researchers at the George Washington University (GW) Cancer Center have discovered a new role for the enzyme, histone deacetylase 11 (HDAC11), in the regulation of T-cell function.

T-cells can infiltrate tumors with the purpose of attacking the . However, prior studies have found that the T-cells group around the tumor, but do not perform the job that they are meant to.

"The goal of the T-cell is to destroy the tumor cells," Eduardo M. Sotomayor, MD, director of the GW Cancer Center and senior author of the study, explained. "We wanted to look at and understand the mechanisms that allowed crosstalk between the tumor and the T-cells that stopped the T-cells from doing their job."

The recent research, published in the journal Blood, centered on the discovery of "epigenetic checkpoints" in T-cell function in an effort to explain how and why these cells are modified to behave differently. The study found that when HDAC11 was removed the T-cells, they were more primed to attack the tumor.

More importantly, this research highlights that HDAC11, which was the last of 11 HDAC to be discovered, should be treated as an immunotherapeutic target.

While the study focused on the T-cells around a lymphoma tumor, this research is pertinent to all types of cancer. The goal for the team was to find a way to activate the T-cells so that they could destroy the . However, the process of cell activation does need to be refined and handled carefully.

"We don't want T-cells to be easily activated, as they can cause harm to the host—the patient. So we want to look at possible methods and therapies to activate the T-cells when they need to work," said Sotomayor.

"The next step is to perform preclinical studies with specific inhibitors of HDAC11 alone and in tandem with other existing immunotherapies, such as anti-PD1/anti-PDL1 antibodies, in order to find the most potent combination. Our goal is to make the T-cells better at destroying cancer tumors."

This study represents a step forward in understanding the underlying mechanisms of T-cell function and of the HDAC11 enzyme.

"T-cells Lacking HDAC11 Have Increased Effector Functions and Mediate Enhanced Alloreactivity in a Murine Model" published in Blood, the Journal of the American Society of Hematology.

Explore further: Cancer researchers look at resistance to targeted therapy in mantle cell lymphoma

More information: David M. Woods et al, T cells lacking HDAC11 have increased effector functions and mediate enhanced alloreactivity in a murine model, Blood (2017). DOI: 10.1182/blood-2016-08-731505

Related Stories

Cancer researchers look at resistance to targeted therapy in mantle cell lymphoma

June 14, 2017
Today some patients suffering with mantle cell lymphoma, a type of blood cancer, can be treated with a pill called Ibrutinib, forgoing conventional chemotherapy. However, many are developing a resistance to this treatment. ...

Scientists find Achilles' heel of cancer cells

November 5, 2012
Several substances inhibiting so-called HDAC enzymes have been studied in trials searching for new anti-cancer drugs in recent years. "Trials have shown that HDAC inhibitors are very effective in arresting growth of cultured ...

A new T-cell population for cancer immunotherapy

May 23, 2017
Scientists at the University of Basel in Switzerland have, for the first time, described a new T cell population that can recognize and kill tumor cells. The open access journal eLife has published the results.

Identifying a novel target for cancer immunotherapy

April 12, 2017
Targeting a molecule called B7-H4—which blocks T-cells from destroying tumor cells—could lead to the development of new therapies that boost the immune system's ability to fight cancer, according to a review published ...

Hybrid immune cells in early-stage lung cancer spur anti-tumor T cells to action

July 14, 2016
The microenvironment of tumors is a mix of cell types, mostly comprised of inflammatory cells. White blood cells, recruited from the blood and bone marrow, represent a significant portion of these inflammatory cells and influence ...

Histone deacetylase inhibitors enhance immunotherapy in lung cancer models, researchers say

March 31, 2016
Several new immunotherapeutic antibodies that inhibit checkpoint receptors on T cells to restimulate the immune system to target tumors have been approved to treat advanced stage lung cancer and melanoma; however, only 20 ...

Recommended for you

Alternative splicing, an important mechanism for cancer

September 22, 2017
Cancer, which is one of the leading causes of death worldwide, arises from the disruption of essential mechanisms of the normal cell life cycle, such as replication control, DNA repair and cell death. Thanks to the advances ...

'Labyrinth' chip could help monitor aggressive cancer stem cells

September 21, 2017
Inspired by the Labyrinth of Greek mythology, a new chip etched with fluid channels sends blood samples through a hydrodynamic maze to separate out rare circulating cancer cells into a relatively clean stream for analysis. ...

Drug combination may improve impact of immunotherapy in head and neck cancer

September 21, 2017
Checkpoint inhibitor-based immunotherapy has been shown to be very effective in recurrent and metastatic head and neck cancer but only in a minority of patients. University of California San Diego School of Medicine researchers ...

Whole food diet may help prevent colon cancer, other chronic conditions

September 21, 2017
A diet that includes plenty of colorful vegetables and fruits may contain compounds that can stop colon cancer and inflammatory bowel diseases in pigs, according to an international team of researchers. Understanding how ...

New kinase detection method helps identify targets for developing cancer drugs

September 21, 2017
Purdue University researchers have developed a high-throughput method for matching kinases to the proteins they phosphorylate, speeding the ability to identify multiple potential cancer drug targets.

Poliovirus therapy induces immune responses against cancer

September 20, 2017
An investigational therapy using modified poliovirus to attack cancer tumors appears to unleash the body's own capacity to fight malignancies by activating an inflammation process that counter's the ability of cancer cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.