Researchers discover fundamental pathology behind ALS

August 16, 2017, St. Jude Children's Research Hospital
Corresponding author J. Paul Taylor, M.D., Ph.D., chair of the St. Jude Cell and Molecular Biology Department and a Howard Hughes Medical Institute investigator. Credit: St. Jude Children's Research Hospital

A team led by scientists at St. Jude Children's Research Hospital and Mayo Clinic has identified a basic biological mechanism that kills neurons in amyotrophic lateral sclerosis (ALS) and in a related genetic disorder, frontotemporal dementia (FTD), found in some ALS patients. ALS is popularly known as Lou Gehrig's disease.

The researchers were led by J. Paul Taylor, M.D., Ph.D., chair of the St. Jude Cell and Molecular Biology Department and a Howard Hughes Medical Institute investigator; and Rosa Rademakers, Ph.D., of the Mayo Clinic in Jacksonville, Florida. The findings appear today in the journal Neuron.

The disease-causing mutation identified is the first of its kind, Taylor said. Unlike in other genetic diseases, the mutation does not cripple an enzyme in a biological regulatory pathway. Rather, the mutation produces an abnormal version of a protein involved in a process called phase separation in .

Phase separation is a mechanism by which proteins assemble into organized assemblies, called membrane-less organelles, necessary for orderly cell functions. The researchers found that the ALS/FTD mutation produces an abnormal version of a protein called TIA1 that is a building block of such organelles. As a result, in ALS, the proteins within the organelles accumulate and kill neurons that control muscles. In FTD, the accumulation kills neurons in the brain. The researchers noted that abnormal phase separation may also underlie Alzheimer's disease.

There is currently no effective treatment for ALS/FTD. However, the researchers believe their finding offers a promising pathway for developing treatments to restore neurons' ability to disassemble the organelles when their cellular purpose has ended.

The TIA1 mutation was discovered when the scientists analyzed the genomes of a family affected with ALS/FTD. Tracing the effect of the mutation on TIA1 structure, the researchers found that it altered the properties of a highly mobile "tail" of the protein. This tail region governs the protein's ability to assemble with other TIA1 proteins. Taylor and his colleagues previously identified such unstructured protein regions, called prion-like domains, as the building blocks of cellular assemblies and as hotspots for disease-causing mutations.

In further studies, the researchers found that TIA1 mutations occurred frequently in ALS patients. The scientists also found that people carrying the mutation had the disease. When the investigators analyzed brain tissue from deceased ALS patients with the mutations, the scientists detected a buildup of TIA1-containing organelles called stress granules in the neurons. Such granules form when the cell experiences such stresses as heat, chemical exposure and aging. To survive, the cell sequesters in the granules' genetic material that codes for cell proteins not necessary for survival-critical processes.

The granules also contained a protein called TDP-43, another building block of stress granules, whose abnormality has been implicated in causing ALS. In test tube studies and experiments with cells, the researchers found that the TIA1 mutation causes the protein to become more "sticky," delaying the normal disassembly of stress granules, trapping TDP-43.

"This paper provides the first 'smoking gun,' showing that the disease-causing mutation changes the phase transition behavior of proteins," Taylor said. "And the change in the phase transition behavior changes the biology of the cell."

More broadly, he said, "These findings are part of an emerging theme that there is a whole spectrum of diseases that includes ALS, and some forms of dementia and myopathy, that are caused by disturbance in the behavior of these structures that perturbs cellular organization."

The findings offer a highly promising pathway to the first effective treatments for ALS/FTD, Taylor said. Current drugs, which are only minimally effective, seek to improve the function of already damaged neurons. However, the new findings suggest the possibility of treatments that would prevent neuronal damage by restoring the healthy balance of in the cells of people with ALS/FTD mutations.

"We know that these material properties are under tight regulation, so perhaps we don't have to target the disease-causing mutation itself," Taylor said. "Perhaps we can restore balance by targeting any of a large number of regulatory molecules in the cell. There are already therapeutic approaches in laboratory testing that seek to do just that."

In further studies, Taylor and his colleagues will seek to understand the basic process of phase transition. They will also map the regulatory machinery for , to seek potential therapeutic targets. He also noted that the same basic pathology of phase transition may also underlie other neurodegenerative diseases, including Alzheimer's disease, and he is aiding researchers in applying the same research approach as in ALS/FTD to Alzheimer's.

Explore further: Newly identified mechanism solves enduring mystery of key element of cellular organization

More information: Neuron (2017). DOI: 10.1016/j.neuron.2017.07.025

Related Stories

Newly identified mechanism solves enduring mystery of key element of cellular organization

September 24, 2015
St. Jude Children's Research Hospital scientists have discovered evidence of a mechanism at the heart of amyotrophic lateral sclerosis (ALS) and related degenerative diseases. The research appears in today's edition of the ...

Toxic peptides disrupt membrane-less organelles in neurodegenerative disease

October 20, 2016
Researchers at St. Jude Children's Research Hospital have discovered the way toxic proteins linked to the most common forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) incapacitate membrane-less ...

Scientists identify ALS disease mechanism

August 28, 2013
Researchers have tied mutations in a gene that causes amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders to the toxic buildup of certain proteins and related molecules in cells, including neurons. The ...

Researchers identify new pathway leading to Alzheimer's disease

May 5, 2016
A newly discovered pathway leading to neurodegeneration in Alzheimer's disease (AD) may unlock the door to new approaches for treating the disease.

New toxic pathway identified for protein aggregates in neurodegenerative disease

March 17, 2017
Led by professor Ludo Van Den Bosch (VIB-KU Leuven), scientists from Belgium, the UK and the US have identified new processes that form protein "clumps" that are characteristic of amyotrophic lateral sclerosis (ALS) and frontotemporal ...

ALS study reveals role of RNA-binding proteins

October 20, 2016
Although only 10 percent of amyotrophic lateral sclerosis (ALS) cases are hereditary, a significant number of them are caused by mutations that affect proteins that bind RNA, a type of genetic material. University of California ...

Recommended for you

Study shows creativity is state of mind that can be trained

April 19, 2018
As an undergraduate student at York University, Joel Lopata was studying film production and jazz performance when a discrepancy became apparent.

Just one concussion could raise Parkinson's risk

April 18, 2018
If you've ever had a mild concussion, your risk of developing Parkinson's disease goes up by 56 percent, a new study of more than 300,000 U.S. veterans suggests.

ALS treatment delays disease and extends life in rats

April 18, 2018
Investigators at Cedars-Sinai are exploring a new way to treat amyotrophic lateral sclerosis (ALS) by transplanting specially engineered neural cells into the brain. Their new study shows the transplanted cells delayed disease ...

Brain scans may help diagnose neurological, psychiatric disorders

April 18, 2018
There are no laboratory tests to diagnose migraines, depression, bipolar disorder and many other ailments of the brain. Doctors typically gauge such illnesses based on self-reported symptoms and behavior.

Difference in gene switching discovered in different parts of brain

April 18, 2018
It is understood that different parts of brain have drastically different functions. However, how these different functions are sustained and regulated at the molecular level has been elusive.

Researchers find the brain processes sight and sound in same manner

April 18, 2018
Although sight is a much different sense than sound, Georgetown University Medical Center neuroscientists have found that the human brain learns to make sense of these stimuli in the same way.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

BubbaNicholson
1 / 5 (2) Aug 21, 2017
Cytokines are just pheromones at the cellular level. Our cells need their senses of smell to stay together as an organism. We know that T cell counts are affected by pheromones, TIA1 obviously affects T cells. The "genetic" diseases should be investigated as pheromone-induced or pheromone-deficiency induced. Anti-pheromone interventions such as contrary acting pheromones, or anti-bodies to pheromones might plausibly cure these diseases.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.