Hopes high for a bioengineered liver

August 9, 2017 by Joe Carlson, Star Tribune (Minneapolis)
Credit: CC0 Public Domain

Every year, at least 1,500 people die on the waiting list for a new liver because of a donor shortage.

It would be convenient to just press the "new liver" button on a 3-D printer and watch the organ take shape on a plate. Unfortunately, that technology does not yet exist. But an Eden Prairie, Minn., company called Miromatrix is taking a different approach, working from the premise that humans don't have to invent a new way to grow organs - nature does that just fine, thanks. The trick, rather, is in taking a liver from one body and implanting it inside another without triggering rejection.

Scientists at Miromatrix think they may have the answer. It involves taking the liver from a pig that was slaughtered for food, washing away the living cells in a mild detergent, and then "reseeding" the resulting white collagen shell with human cells that can transform the pig liver into a functioning human organ.

It may sound like science fiction, but the first attempt at this will take place before the year is out: A pig at the Mayo Clinic will have its liver removed, and a new liver "recellularized" with human and pig cells implanted in its place, to test whether a Miromatrix bioengineered liver can keep the pig alive for at least two days. Results of the experiment should be in by this time next year, and that may clear the way for the first human implant around 2020.

"This has really been the promise of regenerative medicine: How do you create products that can cure disease?" said Jeff Ross, a longtime biomedical researcher who became CEO of Miromatrix during a shake-up at the company earlier this year. "This would be the first product of its kind."

Although other companies and academic labs have figured out how to strip away living cells from an organic structure to leave behind only the "decellularized" matrix, Miromatrix relies on a patented process invented at the University of Minnesota called "perfusion decellularization."

Typically, decellularization is accomplished by soaking the organ in a special solution, but Ross says this method of "immersion perfusion" penetrates only a few millimeters into tissue. That's why other decellularized tissue matrices on the market tend to be thin, like skin-matrix products.

Perfusion decellularization, in contrast, involves mechanically pumping a cleaning solution through an organ's natural internal vasculature continuously for a day or two, until all that's left is the inert white "matrix" of collagen and other proteins that can be preserved in a refrigerator for months at a time. Critically, the resulting matrix still retains tiny tunnels from the original blood vessels, allowing new cells to grow their own vascular system inside the existing structure.

"I like to say perfusion decellularization is analogous to remodeling a house," Ross says. "Essentially we go in and remove all the drywall. What you are left with is the structure of that house. ... A kitchen is still a kitchen; all the plumbing is still intact. The same is true with an organ. When you remove all the cellular material, all that architecture is still there, the microenvironments are still there, the vasculature channels are still there. So then we are able to go in and recellularize."

Miromatrix already has validated this part of the process, earning approval by the Food and Drug Administration to sell two types of meshlike products derived from decellularized pig liver tissue. Ross said thousands of these thin "Miromesh" and "Miroderm" products have been implanted in humans to treat hernias and wounds, with no reported immunological issues from rejection. The 25-employee company had more than $1 million in sales last year from these two products.

The much larger prize lay in repopulating a decellularized pig liver with to create the slippery lining inside natural vessels that allows blood to flow without clotting. In theory, a person's own stem cells could be used to recellularize a pig liver matrix, creating a new organ perfectly suited for the donor's immune system, but that's a long-term goal.

If some of this sounds familiar, it may be because Miromatrix made news several years ago by announcing an effort to create bioengineered hearts through the same process. The work on a recellularized heart is still progressing, but Ross said the liver work has taken precedence because it led to the smaller products such as Miromesh that could be commercialized quickly and because -failure patients have very limited medical options today.

On April 19, Miromatrix announced a new CEO and three new board members. Miromatrix is also preparing to announce that its founder, Doris Taylor - who pioneered perfusion decellularization techniques at the U but left the company in 2011 - is rejoining as a scientific adviser.

"I believe the company's new leadership, combined with my intimate knowledge of this leading-edge technology, will help Miromatrix realize its goal of bringing whole organs to patients worldwide," Taylor said in a statement.

Explore further: Molecule's role in maintaining liver size and function revealed


Related Stories

Molecule's role in maintaining liver size and function revealed

August 1, 2017
For organs to maintain a steady state and fulfill their intended functions, the rates at which the cells within them multiply or die off need to be equal. This balance must also be adjusted when events such as an injury or ...

A recipe for long-lasting livers

April 22, 2015
People waiting for organ transplants may soon have higher hopes of getting the help that they need in time. Researchers at the RIKEN Center for Developmental Biology have developed a new technique that extends the time that ...

Recommended for you

Gene therapy improves immunity in babies with 'bubble boy' disease

December 9, 2017
Early evidence suggests that gene therapy developed at St. Jude Children's Research Hospital will lead to broad protection for infants with the devastating immune disorder X-linked severe combined immunodeficiency disorder. ...

In lab research, scientists slow progression of a fatal form of muscular dystrophy

December 8, 2017
In a paper published in the Nature journal Scientific Reports, Saint Louis University (SLU) researchers report that a new drug reduces fibrosis (scarring) and prevents loss of muscle function in an animal model of Duchenne ...

Double-blind study shows HIV vaccine not effective in viral suppression

December 7, 2017
(Medical Xpress)—A large team of researchers from the U.S. and Canada has conducted a randomized double-blind study of the effectiveness of an HIV vaccine and has found it to be ineffective in suppressing the virus. In ...

Time matters: Does our biological clock keep cancer at bay?

December 7, 2017
Our body has an internal biological or "circadian" clock, which cycles daily and is synchronized with solar time. New research done in mice suggests that it can help suppress cancer. The study, publishing 7 December in the ...

Novel harvesting method rapidly produces superior stem cells for transplantation

December 7, 2017
A new method of harvesting stem cells for bone marrow transplantation - developed by a team of investigators from the Massachusetts General Hospital (MGH) Cancer Center and the Harvard Stem Cell Institute - appears to accomplish ...

Inhibiting TOR boosts regenerative potential of adult tissues

December 7, 2017
Adult stem cells replenish dying cells and regenerate damaged tissues throughout our lifetime. We lose many of those stem cells, along with their regenerative capacity, as we age. Working in flies and mice, researchers at ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.