New method identifies brain regions most likely to cause epilepsy seizures

August 17, 2017, Public Library of Science
Brain scan. Credit: Jon Olav Elkenes, Flickr, CC BY

Scientists have developed a new way to detect which areas of the brain contribute most greatly to epilepsy seizures, according to a PLOS Computational Biology study. The strategy, devised by Marinho Lopes of the University of Exeter and colleagues, could help surgeons select specific brain areas for removal to stop seizures.

Epilepsy is a neurological disorder that affects about 1 out of every 100 people worldwide. Medications can often successfully control the seizures that characterize the disease, but about one third of patients require further treatment. Some receive surgery to remove that cause seizures, but only about 50 percent of surgeries result in long-term freedom from seizures.

To determine which areas of the brain may contribute most to a patient's seizures, surgeons typically examine electroencephalograms (EEGs), which reveal electrical activity in different parts of the brain. In the new study, an international team of scientists led by John Terry and other University of Exeter mathematicians sought to improve on this method.

The researchers first analyzed a database of EEG recordings taken from 16 patients who had already undergone surgery for epilepsy. They found that certain brain regions had more connections between each other and within themselves than did other regions. Such a well-connected network is known as a "rich club."

Using a mathematical modeling approach, the team then predicted that targeting rich clubs by removing especially well-connected nodes would reduce the number of seizures experienced by a patient. Real-world clinical data on the 16 patients confirmed: when surgery removed a greater proportion of the rich club, which is distinct in each patient, patients experienced fewer or no seizures in the long-term.

"What is truly exciting about our findings is the opportunity that such a method offers to identify the specific brain regions involved in the generation of seizures, which in turn can provide guidance on how to optimize surgical interventions to stop seizures," Lopes says.

Looking ahead, the research team plans to confirm these findings using data from more . They will also explore whether the method can be improved by integrating information from additional imaging techniques.

This press release is based on text provided by the authors.

Explore further: Pinpointing where seizures are coming from, by looking between the seizures

More information: Lopes MA, Richardson MP, Abela E, Rummel C, Schindler K, Goodfellow M, et al. (2017) An optimal strategy for epilepsy surgery: Disruption of the rich-club? PLoS Comput Biol 13 (8): e1005637. doi.org/10.1371/journal.pcbi.1005637

Related Stories

Pinpointing where seizures are coming from, by looking between the seizures

May 2, 2017
A computational approach developed at Boston Children's Hospital, described in the journal Neurosurgery, published online May 2, 2017, could enable more patients with epilepsy to benefit from surgery when medications do not ...

New technique could revolutionize surgical treatment of epilepsy

July 7, 2016
Scientists at the University of Exeter have developed a pioneering new technique that could revolutionise the surgical treatment of epilepsy.

Epilepsy biomarkers pave way for noninvasive diagnosis, better treatments

July 18, 2017
Researchers have identified a unique metabolic signature associated with epileptic brain tissue that causes seizures. The chemical biomarker can be detected noninvasively using technology based on magnetic resonance imaging. ...

Computer model could hold key to personalized epilepsy treatment

December 10, 2015
A computer model that identifies the parts of a person's brain responsible for epileptic seizures could be used to design personalised surgical procedures, researchers say.

Study sheds light on safety of driving with epilepsy

December 5, 2016
(HealthDay)—People with epilepsy who experienced longer seizures during a simulated driving test may face an increased risk for crashes while on the road, a new study suggests.

Using network science to help pinpoint source of seizures

December 17, 2015
The ability to reliably pinpoint the anatomical source of epileptic seizures, different for each patient, remains elusive. One third of patients do not respond to medication and an alternative can be surgery to locate and ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.