Researchers help find pathologic hallmarks of Alzheimer's in aged chimpanzee brains

August 1, 2017
Kent State University researchers analyzed the brains of aged chimpanzees to show pathology similar to the human Alzheimer's disease brain. This image shows tau-positive neuron (black) in proximity to amyloid deposits within blood vessels (red) in an aged chimpanzee brain. Credit: Kent State University

Dementia affects one-third of all people older than 65 years in the United States. The most common cause of dementia is Alzheimer's disease, a progressive, irreversible brain disease that results in impaired cognitive functioning and other behavioral changes. Humans are considered uniquely susceptible to Alzheimer's disease, potentially due to genetic differences, changes in brain structure and function during evolution, and an increased lifespan.

However, a new study published Aug. 1 in Neurobiology of Aging provides the most extensive evidence of Alzheimer's disease brain pathology in a primate species to date. Researchers from Kent State University's College of Arts and Sciences, along with colleagues from the George Washington University, Yerkes National Primate Research Center, Georgia State University, Barrow Neurological Institute and the Icahn School of Medicine at Mount Sinai, found that the brains of aged chimpanzees, our closest living relatives, show pathology similar to the human Alzheimer's disease brain.

This research adds to a growing number of studies using an evolutionary perspective to identify differences between humans and chimpanzees that could lead to potential targets for therapeutic interventions in humans.

"Very few studies have investigated Alzheimer's disease pathology in chimpanzees, the species closest in phylogeny and most genetically related to humans," said senior author Mary Ann Raghanti, Ph.D., associate professor and interim chair of anthropology at Kent State. "Brain samples from great apes, particularly aged individuals, are incredibly scarce, so a study of this size is rare."

Dysfunction of two proteins, amyloid beta and tau, plays a role in the development of Alzheimer's disease. In healthy brains, amyloid beta is degraded and eliminated, but in Alzheimer's disease, overproduction and disrupted clearance of the protein results in the formation of plaques between brain cells called neurons. Amyloid beta in the form of insoluble plaques and soluble peptides initiates changes in tau, another protein found mostly in neurons, that destabilizes the cell's skeleton. In Alzheimer's disease, alterations in tau lead to the formation of and cell death. These neuronal changes result in the onset of dementia.

Analysis of the brain samples for this study began in 2013 in Raghanti's lab at Kent State. The brains were provided by the National Chimpanzee Brain Resource, which collects the brains of chimpanzees that have died from natural causes at zoos and research centers. The collection started in the mid-1990s for what was then called the Great Ape Aging Project. The National Chimpanzee Brain Resource is supported by the National Institutes of Health (NIH) and is operated in partnership by the George Washington University, Georgia State and Yerkes National Primate Research Center.

By examining brain regions most affected by Alzheimer's disease pathology in humans, the group demonstrated that and blood vessels were present in all 20 aged chimpanzee brains. Similar to humans, increasingly larger volumes of amyloid beta plaques and blood vessels were found with greater age.

"Interestingly, though, amyloid beta deposition was higher in blood vessels than in plaques, and this correlated with increases in tau lesions," said Melissa Edler, Ph.D., lead author and former doctoral student in biomedical sciences at Kent State. "This suggests that amyloid buildup in the brain's blood vessels precedes plaque formation in chimpanzees."

These findings differ from what we see in humans. While approximately 80 percent of Alzheimer's disease patients also have , or amyloid beta deposits in the brain's that increase the risk for stroke and dementia, the predominant amyloid beta pathology is plaques. Tau lesions also were found in the forms of neurofibrillary tangles and clusters of tau-positive neurites (i.e., pieces of dying neurons).

"Neurofibrillary tangles are observed in Alzheimer's disease patients, but the tau-immunoreactive neuritic clusters in the neocortex appear specific to chimpanzees," said Patrick R. Hof, M.D., Regenstreif professor and vice-chair of neuroscience at Icahn School of Medicine at Mount Sinai. In addition, neurofibrillary tangles pathology was observed in apes that exhibited plaques and moderate or severe cerebral amyloid angiopathy and in one individual with virtually no pathology. "The presence of and tau pathology in aged chimpanzees indicates these Alzheimer's disease lesions are not specific to the human as generally believed," Hof continued.

"Whether these pathologies play a key role in age-related cognitive decline requires continued investigation of this species," said Elliott Mufson, Ph.D., professor and Greening Chair in Aging at the Barrow Neurological Institute.

"We initiated the Great Ape Aging Project 20 years ago because we saw an aging chimpanzee population under human care that would need geriatric attention for disorders similar to those affecting aging humans," said Joseph Erwin, Ph.D., research professor of anthropology at the George Washington University.

"Findings like those reported in this paper provide significant evidence of the value and need for continued behavioral, cognitive and neurogenomic work with this important species," said William D. Hopkins, Ph.D., professor of neuroscience at Georgia State and associate research scientist at Yerkes National Primate Research Center, Emory University.

"This study confirms the value of a 'One Health' approach to gerontology and the neurobiology of aging for the benefit of humans and apes," Erwin added.

Explore further: Blood test identifies key Alzheimer's marker

More information: Melissa K. Edler et al, Aged chimpanzees exhibit pathologic hallmarks of Alzheimer's disease, Neurobiology of Aging (2017). DOI: 10.1016/j.neurobiolaging.2017.07.006

Related Stories

Blood test identifies key Alzheimer's marker

July 19, 2017
A new study led by researchers at Washington University School of Medicine in St. Louis suggests that measures of amyloid beta in the blood have the potential to help identify people with altered levels of amyloid in their ...

Unique structure of brain blood vessel amyloid latest clue to Alzheimer's development?

November 22, 2016
Accumulating amounts of amyloid, which is a fragment of a larger protein, in the brain have been associated with the development of dementia, including Alzheimer's disease. Now a team of neuroscience and biochemistry researchers ...

Genetically engineered mice suggest new model for how Alzheimer's causes dementia

July 4, 2016
Using a novel, newly developed mouse model that mimics the development of Alzheimer's disease in humans, Johns Hopkins researchers say they have been able to determine that a one-two punch of major biological "insults" must ...

Abnormal brain protein may contribute to Alzheimer's disease development

September 30, 2016
A recently-recognized pathologic protein in the brain may play a larger role in the development of clinical Alzheimer's disease dementia than previously recognized, according to a study by researchers at Rush University Medical ...

'Pac-Man' gene implicated in Alzheimer's disease

July 26, 2016
A gene that protects the brain from the harmful build-up of amyloid-beta, one of the causative proteins implicated in Alzheimer's disease, has been identified as a new target for therapy by NeuRA researchers.

New Alzheimer's research suggests possible cause: The interaction of proteins in the brain

June 19, 2013
For years, Alzheimer's researchers have focused on two proteins that accumulate in the brains of people with Alzheimer's and may contribute to the disease: plaques made up of the protein amyloid-beta, and tangles of another ...

Recommended for you

Artificial intelligence predicts dementia before onset of symptoms

August 22, 2017
Imagine if doctors could determine, many years in advance, who is likely to develop dementia. Such prognostic capabilities would give patients and their families time to plan and manage treatment and care. Thanks to artificial ...

Chronic stress induces fatal organ dysfunctions via a new neural circuit

August 22, 2017
Hokkaido University researchers revealed that fatal gut failure in a multiple sclerosis (MS) mouse model under chronic stress is caused by a newly discovered nerve pathway. The findings could provide a new therapeutic strategy ...

Noninvasive eye scan could detect key signs of Alzheimer's years before patients show symptoms

August 17, 2017
Cedars-Sinai neuroscience investigators have found that Alzheimer's disease affects the retina—the back of the eye—similarly to the way it affects the brain. The study also revealed that an investigational, noninvasive ...

Could olfactory loss point to Alzheimer's disease?

August 16, 2017
By the time you start losing your memory, it's almost too late. That's because the damage to your brain associated with Alzheimer's disease (AD) may already have been going on for as long as twenty years. Which is why there ...

New Machine Learning program shows promise for early Alzheimer's diagnosis

August 15, 2017
A new machine learning program developed by researchers at Case Western Reserve University appears to outperform other methods for diagnosing Alzheimer's disease before symptoms begin to interfere with every day living, initial ...

Brain scan study adds to evidence that lower brain serotonin levels are linked to dementia

August 14, 2017
In a study looking at brain scans of people with mild loss of thought and memory ability, Johns Hopkins researchers report evidence of lower levels of the serotonin transporter—a natural brain chemical that regulates mood, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.