Scientists characterize regulatory DNA sequences responsible for human diseases

August 24, 2017
Credit: UT Southwestern Medical Center

Scientists from the Children's Medical Center Research Institute at UT Southwestern (CRI) have developed an innovative system to identify and characterize the molecular components that control the activities of regulatory DNA sequences in the human genome.

The genome, which is the complete complement of human DNA, including all protein-coding genes, has nearly 3 billion base pairs. Despite its vast size, only 2 percent of our genome encodes for proteins. The other 98 percent is comprised of noncoding regions that regulate where and when the protein-coding genes are activated. These noncoding regions have repeatedly been identified by human genetics and cancer genomic studies as potential drivers for human diseases such as cancer.

A better understanding of these regulatory regions and the underlying principles that guide when genes are turned on and off is necessary to uncover how diseases develop and to find new treatments. However, the tools to identify these noncoding regions and to understand how they work are limited. They require the prior identification of the protein factors that regulate these regions, depend on the availability of reagents such as antibodies, and often need sophisticated genetic manipulations.

The new system, developed by researchers in the Dr. Jian Xu lab and published in the latest issue of Cell, is paving the way for an in-depth look at these regulatory genetic elements. This system, named CAPTURE (CRISPR Affinity Purification in situ of Regulatory Elements), provides an approach to simultaneously isolate genomic sequence-associated proteins as well as their RNA and DNA interactions.

"The ability that CAPTURE gives us to isolate and analyze the entire set of factors that regulate our DNA offers many possibilities to study how different proteins control genome function in cancer and stem cells," said Dr. Xu, senior author of the study and Assistant Professor in CRI at UTSW and the Department of Pediatrics. "It also opens up a completely new avenue to find new drug targets."

The CAPTURE method was developed by repurposing the CRISPR genomic editing system, including the CRISPR associated protein 9 (Cas9) - an RNA-guided enzyme that binds to DNA. CAPTURE works by using guide RNAs to direct a deactivated version of Cas9 (dCas9) to the DNA elements that researchers want to study. Then, dCas9 - along with other proteins, RNA, and DNA sequences associated with dCas9's position on the chromosome (its genomic loci) - can be isolated and studied. This makes it possible to identify and characterize genomic regulatory regions, and their associated proteins, throughout the genome.

Using CAPTURE, Dr. Xu's laboratory successfully identified many known and new human telomere-associated proteins as a proof of principle. Telomeres, which are short, repetitive DNA sequences on the ends of chromosomes, protect our chromosomes from fraying or fusing with neighboring chromosomes. Next, researchers uncovered new mechanisms regulating aberrant beta-globin gene expression in human blood cells. Beta-globin is a vital part of a larger known as hemoglobin that is responsible for the exchange of oxygen and carbon dioxide between our lungs and body tissues. Altered expression of beta-globin genes is associated with inherited hemoglobin disorders, such as sickle cell disease, currently affecting 5 percent of the world's population.

"The unbiased analysis of the by CAPTURE provides biomedical researchers with a powerful new tool to decipher underlying regulatory principles. This new tool will advance our understanding of the and genetic variations in a variety of diseases," Dr. Xu said.

Explore further: Researchers pinpoint key regulatory role of noncoding genes in prostate cancer development

More information: In Situ Capture of Chromatin Interactions by Biotinylated dCas9, Cell (2017). DOI: 10.1016/j.cell.2017.08.003 , http://www.cell.com/cell/fulltext/S0092-8674(17)30891-7

Related Stories

Researchers pinpoint key regulatory role of noncoding genes in prostate cancer development

August 15, 2016
Prostate cancer researchers studying genetic variations have pinpointed 45 genes associated with disease development and progression.

Recommended for you

Scientists first to use genetic engineering technique to investigate Tourette's

September 25, 2017
Scientists at Rutgers University-New Brunswick are the first to use a genetic engineering technique to create brain cells from the blood cells of individuals in a three-generation family with Tourette syndrome to help determine ...

Newly revealed autism-related genes include genes involved in cancer

September 25, 2017
The identification of genes related to autism spectrum disorder (ASD) could help to better understand the disorder and develop new treatments. While scientists have found many genetic differences in different people with ...

Study reveals an ancient Achilles heel in the human genome

September 21, 2017
In a major study published today, researchers at deCODE genetics use whole-genome data from 14,000 people from across the population of Iceland, including 1500 sets of parents and children, to provide the most detailed portrait ...

Forgotten strands of DNA initiate the development of immune cells

September 21, 2017
Intricate human physiological features such as the immune system require exquisite formation and timing to develop properly. Genetic elements must be activated at just the right moment, across vast distances of genomic space.

Genome editing reveals role of gene important for human embryo development

September 20, 2017
Researchers have used genome editing technology to reveal the role of a key gene in human embryos in the first few days of development. This is the first time that genome editing has been used to study gene function in human ...

A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Scientists have identified a hotspot for autism-related mutations in a single gene.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.