Acid reflux cancer link

Esophageal adenocarcinoma (EA) is an increasingly common cancer that silently affects the esophagus – the muscular tube that moves food into stomach. What causes EA is not well known but gastroesophageal reflux disease (GERD), characterized by chronic heartburn/acid reflux, is the strongest known risk factor.

Now in a study published in the journal Scientific Reports, Alexander Zaika, Ph.D. and coworkers show that DNA damage in the esophageal cells caused by acidic bile reflux (BA/A) activates enzymes called NADPH oxidases in the mitochondria, the cell's power house, to release highly reactive-oxygen species (ROS).

Zaika and his team identified two specific enzymes, NOX1 and NOX2, which were responsible for ROS generation. When they blocked NOX1 and NOX2 with small interfering RNA (siRNA) or chemical inhibitors, ROS production and DNA damage induced by BA/A was significantly reduced.

Inhibition of ROS induced by reflux may be a useful strategy for preventing DNA damage and decreasing the risk for tumor formation caused by GERD, they concluded.


Explore further

Team uncovers pathway linking heartburn and esophageal cancer

More information: Vikas Bhardwaj et al. Activation of NADPH oxidases leads to DNA damage in esophageal cells, Scientific Reports (2017). DOI: 10.1038/s41598-017-09620-4
Provided by Vanderbilt University
Citation: Acid reflux cancer link (2017, September 15) retrieved 23 March 2019 from https://medicalxpress.com/news/2017-09-acid-reflux-cancer-link.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more