Compound found to improve brain structure development of mice with Down syndrome

September 6, 2017 by Bob Yirka report
Credit: Martha Sexton/public domain

(Medical Xpress)—A team with members from several institutions in Japan has found a compound that reduces the impact of Down syndrome in mice. In their paper published in Proceedings of the National Academy of Sciences, the team describes their search for a neural improvement compound and report on one that improved brain structure development in mice with Down syndrome.

Down syndrome is the most common form of occurring in humans, impacting approximately one of every 1000 people. Among other things, it is characterized by reduced brain function. It happens when a person has an extra copy of chromosome 21, which results in problems with nerve development. In this new effort, the researchers began their work by looking for a compound that could cause to grow into . After looking at 717 possibilities, the team came up with one they call altered generation of neurons (ALGERNON). As part of their research, they looked at how the compound might impact a known to have Down syndrome.

The team studied the impact of the compound by adding it to the feed of a pregnant mouse carrying a Down embryo for a period of five days and then studying its impact on the fetal mouse brain as it developed thereafter. They found that administration of the compound caused the cerebral cortex to develop normally (in mice with Down, the structure is thinner than normal). Even better, they found that the mice behaved normally after birth on into adulthood—they did just as well at solving a maze as unafflicted .

The team next tried adding the compound to human stem cells from people with Down syndrome in a petri dish and found that the cells grew normally—this finding, of course, offers the possibility that the compound might also prevent brain malformation for humans, as well. But, the team notes, testing it with human embryos is still a long way off. It is still not known what other impacts the drug might have on development—a lot more testing will have to be done first. The team notes that there might also be some social issues to resolve, because in administering the drug to a pregnant woman, doctors would in effect be altering physical characteristics passed down to offspring from parents.

Explore further: Discovery fuels hope for Rett syndrome treatment

More information: Akiko Nakano-Kobayashi et al. Prenatal neurogenesis induction therapy normalizes brain structure and function in Down syndrome mice, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1704143114

Down syndrome (DS) caused by trisomy of chromosome 21 is the most common genetic cause of intellectual disability. Although the prenatal diagnosis of DS has become feasible, there are no therapies available for the rescue of DS-related neurocognitive impairment. A growth inducer newly identified in our screen of neural stem cells (NSCs) has potent inhibitory activity against dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) and was found to rescue proliferative deficits in Ts65Dn-derived neurospheres and human NSCs derived from individuals with DS. The oral administration of this compound, named ALGERNON (altered generation of neurons), restored NSC proliferation in murine models of DS and increased the number of newborn neurons. Moreover, administration of ALGERNON to pregnant dams rescued aberrant cortical formation in DS mouse embryos and prevented the development of abnormal behaviors in DS offspring. These data suggest that the neurogenic phenotype of DS can be prevented by ALGERNON prenatal therapy.

Related Stories

Discovery fuels hope for Rett syndrome treatment

August 23, 2017
Vanderbilt University researchers have relieved symptoms of Rett syndrome in a mouse model with a small molecule that works like the dimmer switch in an electrical circuit.

Two genes help older brain gain new cells

August 10, 2017
Two genes act as molecular midwives to the birth of neurons in adult mammals and when inactivated in mice cause symptoms of Fragile X Syndrome, a major cause of mental retardation, a new Yale University study has shown.

BPA replacement BHPF found to also cause estrogen related problems in mice

March 2, 2017
(Medical Xpress)—A team of researchers from China and Japan has found that BHPF, a replacement chemical for BPA in plastics, can also cause estrogen-related problems in mice. In their paper published in the journal Nature ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

Experimental compound reverses Down syndrome-like learning deficits in mice

September 4, 2013
Researchers at Johns Hopkins and the National Institutes of Health have identified a compound that dramatically bolsters learning and memory when given to mice with a Down syndrome-like condition on the day of birth. As they ...

Adding human glial cells to mice brains found to improve memory and cognition

December 3, 2014
(Medical Xpress)—A team of researchers working at the University of Rochester in New York, has found that injecting glial cells into a mouse brain caused an improvement in both memory and cognition in the mouse. In their ...

Recommended for you

Scientists reveal new avenue for drug treatment in neuropathic pain

November 24, 2017
New research from King's College London has revealed a previously undiscovered mechanism of cellular communication, between neurons and immune cells, in neuropathic pain.

Small but distinct differences among species mark evolution of human brain

November 23, 2017
The most dramatic divergence between humans and other primates can be found in the brain, the primary organ that gives our species its identity.

Scientists find key to regenerating blood vessels

November 23, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a signaling pathway that is essential for angiogenesis, the growth of new blood vessels from pre-existing vessels. The ...

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.