Discovery of a new mechanism for controlling memory

September 14, 2017
Discovery of a new mechanism for controlling memory
Staining of receptors and pit for endocytosis, the process by which molecules are transported inside a cell. Credit: Jennifer Petersen/Daniel Choquet/IINS/CNRS Photo library

Researchers in Bordeaux recently discovered a new mechanism for storing information in synapses and a means of controlling the storage process. The breakthrough moves science closer to unveiling the mystery of the molecular mechanisms of memory and learning processes. The research, carried out primarily by researchers at the Interdisciplinary Institute for Neurosciences (CNRS/Université de Bordeaux) and the Bordeaux Imaging Center appears in the 13 September 2017 edition of Nature.

Communication between neurons passes through over one million billion synapses, tiny structures the tenth of the width of a single hair, in an extremely complex process. Synaptic plasticity – the ability of synapses to adapt in response to – was discovered nearly 50 years ago, leading the scientific community to identify it as a vital functional component of memorisation and learning.

Neurotransmitter receptors – found at the synapse level – play a key role in the transmission of nerve messages. A few years ago, the team of researchers in Bordeaux discovered that were not immobile as thought previously, but in a constant state of agitation. They posited that controlling this agitation through neuronal activity could modulate the effectiveness of by regulating the number of receptors present at a given time in a synapse.

The new research has taken the two teams further in their understanding of the basic mechanisms behind how information is stored in the brain. Scientists combined techniques based on chemistry, electrophysiology and high-resolution imaging to develop a new method to immobilise receptors at synaptic sites. This method successfully stops receptor movement, making it possible to study the impact of the immobilisation on brain activity and learning ability. It provides evidence that receptor movement is essential to synaptic plasticity as a response to intense neuronal activity.

Pathways of neurotransmitter receptors followed by detecting single molecules at the surface of a rat hippocampal cultured neuron. Benjamin Compans/Daniel Choquet/IINS/CNRS Photo library

Researchers also explored the direct role of synaptic plasticity in learning. By teaching mice to recognise a specific environment, they show that halting receptor movement can be used to block the acquisition of this type of memory, confirming the role of in this process.

The discovery offers new perspectives on controlling memory. The memorisation protocol tested here activates a particular area of the brain: the hippocampus. The next step for researchers is to determine if the mechanism discovered can also be applied to other forms of learning and, by extension, to other areas of the brain. From a technical standpoint, it will be possible to develop new, reversible and light-sensitive methods of immobilizing in order to better control the process.

Explore further: Proteins involved in brain's connectivity are controlled by multiple checkpoints

More information: A. C. Penn et al. Hippocampal LTP and contextual learning require surface diffusion of AMPA receptors, Nature (2017). DOI: 10.1038/nature23658

Related Stories

Proteins involved in brain's connectivity are controlled by multiple checkpoints

August 31, 2017
University of Bristol scientists have found that the delivery of a group of proteins involved in the information flow between the brain's nerve cells to the synapse is much more sophisticated than previously suspected. The ...

Neuroscientists call for more comprehensive view of how brain forms memories

July 5, 2017
Neuroscientists from the University of Chicago argue that research on how memories form in the brain should consider activity of groups of brain cells working together, not just the connections between them.

A specific neurotransmitter receptor supports optimal information processing in the brain

March 30, 2015
Researchers have been fascinated for a long time by learning and memory formation, and many questions are still open. Bochum-based neuroscientists Prof Dr Denise Manahan-Vaughan and Dr Hardy Hagena have discovered a key building ...

Precise mechanisms of a calcium-dependent kinase during the formation of new memories

May 17, 2017
Synaptic plasticity is the ability to strengthen or weaken the synapses or sites of communication between neurons. These changes are triggered by the activation of several different molecules inside small neuronal protrusions ...

Learning and memory: How neurons activate PP1

November 4, 2013
A study in The Journal of Cell Biology describes how neurons activate the protein PP1, providing key insights into the biology of learning and memory.

A mechanism to improve learning and memory

February 21, 2012
There are a number of drugs and experimental conditions that can block cognitive function and impair learning and memory. However, scientists have recently shown that some drugs can actually improve cognitive function, which ...

Recommended for you

Study reveals breakthrough in decoding brain function

September 25, 2017
If there's a final frontier in understanding the human body, it's definitely not the pinky. It's the brain.

Overturning widely held ideas: Visual attention drawn to meaning, not what stands out

September 25, 2017
Our visual attention is drawn to parts of a scene that have meaning, rather than to those that are salient or "stick out," according to new research from the Center for Mind and Brain at the University of California, Davis. ...

The rat race is over: New livestock model for stroke could speed discovery

September 25, 2017
It is well-known in the medical field that the pig brain shares certain physiological and anatomical similarities with the human brain. So similar are the two that researchers at the University of Georgia's Regenerative Bioscience ...

Touching helps build the sexual brain

September 21, 2017
Hormones or sexual experience? Which of these is crucial for the onset of puberty? It seems that when rats are touched on their genitals, their brain changes and puberty accelerates. In a new study publishing September 21 ...

Gene immunotherapy protects against multiple sclerosis in mice

September 21, 2017
A potent and long-lasting gene immunotherapy approach prevents and reverses symptoms of multiple sclerosis in mice, according to a study published September 21st in the journal Molecular Therapy. Multiple sclerosis is an ...

Neuron types in brain are defined by gene activity shaping their communication patterns

September 21, 2017
In a major step forward in research, scientists at Cold Spring Harbor Laboratory (CSHL) today publish in Cell a discovery about the molecular-genetic basis of neuronal cell types. Neurons are the basic building blocks that ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.