Scientists Discover Mechanism Behind 'Paused' Genes

September 7, 2017 by William Doss

Northwestern Medicine scientists have discovered the mechanism driving a protein that influences transcription, a crucial step in gene expression. The study, recently published in Science, could lead to drugs that control faulty gene expression, a precursor to cancer and other disease.

Ali Shilatifard, PhD, the Robert Francis Furchgott Professor and chair of Biochemistry and Molecular Genetics, was the senior author on the study, while doctoral student Fei Chen was the lead author.

The process of the transcription of a gene begins when factors including an enzyme called RNA Polymerase II (Pol II) assemble at a DNA sequence upstream from a gene at a location called a promoter. Pol II transcribes protein-encoding genes.

In a 2015 manuscript published in Cell, Shilatifard, Chen, and other members of Shilatifard's laboratory demonstrated how a protein called Pol-II-associated factor 1 (PAF1) was responsible for pausing Pol II at certain promotors, holding back the initiation of transcription.

"Keeping promotors paused and then allowing them to be released at the right time during development is very important for the proper regulation of the expression of various genes during the different stages of development," Shilatifard said.

While that research established that the removal of PAF1 released Pol II from its paused state, it didn't explore PAF1's specific mechanism of action. It wasn't until Chen began exploring the role of transcriptional enhancers that he and his collaborators identified a connection.

The purpose of these enhancers is to increase the likelihood that transcription of a certain gene will occur, often in a tissue-specific manner, according to previous research.

"The function of such enhancers is to make sure that the cells express a certain gene into eye cells and not into skin cells, for example," Shilatifard said.
In the recently published study, Chen, working in Shilatifard's lab, found the removal of PAF1 regulates the activation of the enhancer region, which results in pause and release.

"There are many studies of enhancer regulation and many studies of pause regulation, but we were the first to show the two steps were connected," Chen said.

These enhancers could be key to preventing and treating cancer, according to Shilatifard.

"We know that enhancers are mutated in a large number of cancers," he said. "We think the link could be used as a way to look at the process of transcription for a lot of therapies, which would be the next step."

Drugs that regulate the pause and release for transcription may represent a promising avenue for future development, according to Shilatifard, but there is still much work to be done.

"Now that we've discovered the function of PAF1 in enhancer activation and Pol II pause and release, we can set up screens to identify inhibitors, activators, and augmenters of this process, and then move on to diseases that are caused by this misregulation," Shilatifard said.

"We know pausing is central for development and that the misregulation of pausing can cause disease. Now we're going to build on it," he added.

These studies were supported by grants from: the National Institutes of Health, MH102616, CA211428, and GM078455 and GM105754; the Natural Science Foundation of China 31671384; a JSPS Research Fellowship for Young Scientists; a Eugene McDermott Graduate Fellowship; funds from the University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center; and by the Robert H. Lurie Comprehensive Cancer Center – The Lefkofsky Family Foundation/Liz and Eric Lefkofsky Innovation Research Award. Transcriptional elongation studies in the Shilatifard's laboratory are supported by the National Cancer Institute grant CA214035.

Explore further: Uncovering the genetic mechanisms driving embryonic development

More information: PAF1 regulation of promoter-proximal pause release via enhancer activation
BY FEI XAVIER CHEN, PENG XIE, CLAYTON K. COLLINGS, KAIXIANG CAO, YUKI AOI, STACY A. MARSHALL, EMILY J. RENDLEMAN, MICHAL UGARENKO, PATRICK A. OZARK, ANDA ZHANG, RAMIN SHIEKHATTAR, EDWIN R. SMITH, MICHAEL Q. ZHANG, ALI SHILATIFARD
PUBLISHED ONLINE31 AUG 2017


DOI: doi.org/10.1126/science.aan3269
SOURCE: NORTHWESTERN UNIVERSITY

MEDIA CONTACT: ERIN SPAIN at spain@northwestern.edu or 312-503-0337

Related Stories

Uncovering the genetic mechanisms driving embryonic development

May 11, 2017
A new Northwestern Medicine study, published in Genes and Development, has identified two DNA elements crucial to the activation of a set of genes that drive the early development of embryos, and which also play an important ...

Halting lethal childhood leukemia

January 6, 2017
Northwestern Medicine scientists have discovered the genetic driver of a rare and lethal childhood leukemia and identified a targeted molecular therapy that halts the proliferation of leukemic cells. The finding also has ...

Could far-flung mutations in the genome activate cancer-causing genes? Ask an expert

March 20, 2014
Stowers Institute Investigator, Ali Shilatifard, Ph.D., will take center stage at a Meet-the-ExpertSession at the 2014 Annual Meeting of the American Association for Cancer Research (AACR) being held April 5th-9th in San ...

'Mysterious' non-protein-coding RNAs play important roles in gene expression

January 12, 2017
In cells, DNA is transcribed into RNAs that provide the molecular recipe for cells to make proteins. Most of the genome is transcribed into RNA, but only a small proportion of RNAs are actually from the protein-coding regions ...

Recommended for you

Scientists first to use genetic engineering technique to investigate Tourette's

September 25, 2017
Scientists at Rutgers University-New Brunswick are the first to use a genetic engineering technique to create brain cells from the blood cells of individuals in a three-generation family with Tourette syndrome to help determine ...

Newly revealed autism-related genes include genes involved in cancer

September 25, 2017
The identification of genes related to autism spectrum disorder (ASD) could help to better understand the disorder and develop new treatments. While scientists have found many genetic differences in different people with ...

Study reveals an ancient Achilles heel in the human genome

September 21, 2017
In a major study published today, researchers at deCODE genetics use whole-genome data from 14,000 people from across the population of Iceland, including 1500 sets of parents and children, to provide the most detailed portrait ...

Forgotten strands of DNA initiate the development of immune cells

September 21, 2017
Intricate human physiological features such as the immune system require exquisite formation and timing to develop properly. Genetic elements must be activated at just the right moment, across vast distances of genomic space.

Genome editing reveals role of gene important for human embryo development

September 20, 2017
Researchers have used genome editing technology to reveal the role of a key gene in human embryos in the first few days of development. This is the first time that genome editing has been used to study gene function in human ...

A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Scientists have identified a hotspot for autism-related mutations in a single gene.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.