New study suggests an unconventional way for memories to form

September 8, 2017 by Bob Yirka, Medical Xpress report
Credit: Wikimedia Commons

(Medical Xpress)—A team of researchers working at Howard Hughes Medical Institute has found possible evidence of a way for memories to form that differs from conventional theory. In their paper published in the journal Science, the team describes their theory, the biophysical model they built and what their findings suggest about the way some memories may form. Julija Krupic with University College London offers a Perspective piece on the study in the same issue and gives some background on memory research in general.

After many years of research, brain scientists have come to some degree of consensus about how the brain forms memories—as Krupic notes, it happens as a result of the creation of neural networks that are strengthened when neurons in the network cause or contribute to activity occurring in a connected neuron—the idea has become known as the Hebbian learning rule. Under the rule, memories are formed due to activities that occur very closely in time, allowing the neurons time to build stronger bonds for those events that are more memorable.

The theory also embraces the idea of plasticity—the network must changeable in order for a memory to strengthen. The theory further suggests that memories are added to or recalled by neurons firing in quick succession in short bursts of activity, a process called long-term potentiation (LTP). In this new effort, the researchers suggest there might be a different type of memory processing that happens over longer periods of time. Such memories, they suggest, could help with remembering events as a sequence, rather than just as snapshots. They call this new memory mechanism behavioral time scale synaptic plasticity (BTSP).

The new suggests that there need not be a relationship between interconnected during sequential formation to maintain associations that can be long-lasting—instead, place fields are involved. To test the plausibility of their ideas, the researchers built a biophysical model based on what might happen with place fields during times when a mouse is moving faster versus slower—it showed the idea to be plausible. A BTSP mechanism, Krupic notes, could lead to over-representation of places that are important to a mouse—such as the steps required to get to a good food source, allowing it to find such a source when snapshot types of memories alone will not suffice.

Explore further: Laser used to reawaken lost memories in mice with Alzheimer's disease

More information: Katie C. Bittner et al. Behavioral time scale synaptic plasticity underlies CA1 place fields, Science (2017). DOI: 10.1126/science.aan3846

Abstract
Learning is primarily mediated by activity-dependent modifications of synaptic strength within neuronal circuits. We discovered that place fields in hippocampal area CA1 are produced by a synaptic potentiation notably different from Hebbian plasticity. Place fields could be produced in vivo in a single trial by potentiation of input that arrived seconds before and after complex spiking. The potentiated synaptic input was not initially coincident with action potentials or depolarization. This rule, named behavioral time scale synaptic plasticity, abruptly modifies inputs that were neither causal nor close in time to postsynaptic activation. In slices, five pairings of subthreshold presynaptic activity and calcium (Ca2+) plateau potentials produced a large potentiation with an asymmetric seconds-long time course. This plasticity efficiently stores entire behavioral sequences within synaptic weights to produce predictive place cell activity.

Related Stories

Laser used to reawaken lost memories in mice with Alzheimer's disease

July 26, 2017
(Medical Xpress)—A team of researchers at Columbia University has found that applying a laser to the part of a mouse brain used for memory storage caused the mice to recall memories lost due to a mouse version of Alzheimer's ...

Modeling memory in the brain

May 18, 2015
Scientists at EPFL have uncovered mathematical equations behind the way the brain forms – and even loses – memories.

Neuroscientists call for more comprehensive view of how brain forms memories

July 5, 2017
Neuroscientists from the University of Chicago argue that research on how memories form in the brain should consider activity of groups of brain cells working together, not just the connections between them.

Research team may have observed building blocks of memories in the brain

September 20, 2016
(Medical Xpress)—A team of researchers working at Aix-Marseille University in France has observed what they believe are the building blocks of memories in a mouse brain. In their paper published in the journal Science, ...

Study sheds new light on the formation of emotional fear memories

December 8, 2014
Everyday events are easy to forget, but unpleasant ones can remain engraved in the brain. A new study published in the Proceedings of the National Academy of Sciences identifies a neural mechanism through which unpleasant ...

Watching a memory form: Sea slug study reveals novel memory mechanism

November 5, 2015
Neuroscientists at Rosalind Franklin University of Medicine and Science have discovered that some neurons are joiners—seemingly eager to link-up with networks in which learning is taking place.

Recommended for you

The brain's frontal lobe could be involved in chronic pain, according to research

May 25, 2018
A University of Toronto scientist has discovered the brain's frontal lobe is involved in pain transmission to the spine. If his findings in animals bear out in people, the discovery could lead to a new class of non-addictive ...

Aggression neurons identified

May 25, 2018
High activity in a relatively poorly studied group of brain cells can be linked to aggressive behaviour in mice, a new study from Karolinska Institutet in Sweden shows. Using optogenetic techniques, the researchers were able ...

Doctors fail to flag concussion patients for critical follow-up

May 25, 2018
As evidence builds of more long-term effects linked to concussion, a nationwide study led by scientists at UCSF and the University of Southern California has found that more than half of the patients seen at top-level trauma ...

Bursts of brain activity linked to memory reactivation

May 24, 2018
Leading theories propose that sleep presents an opportune time for important, new memories to become stabilized. And it's long been known which brain waves are produced during sleep. But in a new study, researchers set out ...

Study suggests brainwave link between disparate disorders

May 24, 2018
A brainwave abnormality could be a common link between Parkinson's disease, neuropathic pain, tinnitus and depression—a link that authors of a new study suggest could lead to treatment for all four conditions.

Researchers define molecular basis to explain link between a pregnant mother's nutrition and infant growth

May 24, 2018
For years, pregnant mothers have questioned their nutritional habits: "Will eating more cause my baby to be overweight?" Or, "I'm eating for two, so it won't hurt to have an extra serving, right?"

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

gghartmail
not rated yet Sep 08, 2017
Forming memories? This sounds like muscle memory. True memories are the millions of fine analog particulars of data: is that address 1.1.21 or 1.1.12. Music code, colors, computer code, mathematics, language, grammar, the millions of fine brush strokes or pencil marks in artwork, the detailed schematics of architectural drawing. All of these finely detailed shapes, sounds, symbols, colors, smells, tastes, etc are what memory is. How does a neuron distinguish these differences?
Anyone have a clue? Thanks.
Sassen
not rated yet Sep 09, 2017
80% of our brain is involved with movement and muscles.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.