Study sheds new light on the formation of emotional fear memories

December 8, 2014
Credit: Human Brain Project

Everyday events are easy to forget, but unpleasant ones can remain engraved in the brain. A new study published in the Proceedings of the National Academy of Sciences identifies a neural mechanism through which unpleasant experiences are translated into signals that trigger fear memories by changing neural connections in a part of the brain called the amygdala. The findings show that a long-standing theory on how the brain forms memories, called Hebbian plasticity, is partially correct, but not as simple as was originally proposed.

The effort led by Joshua Johansen from the RIKEN Brain Science Institute in Japan and New York University scientists Lorenzo Diaz-Mataix and Joseph LeDoux, tested an influential theory proposed in 1949 by the Canadian psychologist Donald Hebb that neurons that are connected and fire electrical impulses at the same time increase the strength of their connections to form a memory. Previous work in reduced brain preparations had demonstrated that this process, called Hebbian plasticity, can increase the connection strength between neurons, but it remained untested during memory formation in behaving animals. To directly test this question, the team examined whether coincident electrical excitation of neurons which are known to store fear memories is necessary and sufficient to trigger changes in and memory formation.

The researchers used a technique called optogenetics to silence electrical activity in a brain area called the amygdala where fear memories are stored, as animals learned to associate an auditory tone and mild electrical shock. In accord with Hebbian theory, silencing reduced memory formation and the prevented strengthening of the connections between auditory neurons and amygdala cells.

However, when they eliminated the shock and replaced it with optical excitation of amygdala neurons, no learning occurred. Surprisingly, learning was restored when for a neuromodulator called noradrenaline, which is important for attention, were activated at the same time. The results demonstrated that Hebbian mechanisms are important but not sufficient for memory formation, but require concurrent activation of noradrenaline.

According to Johansen, "This work represents one of the first tests of an influential hypothesis for memory formation in the working brain. The findings from this work support the general premise of the hypothesis, but suggest that other factors such as noradrenaline are also crucial." The study provides a new perspective on how aversive experiences, such as being attacked by a dog, for example, are translated by the brain into emotional fear memories and may represent a general process to control in other areas. In a broader context, the ability to precisely control of fear memory may help to treat them when they are medically deleterious in conditions such as fearful anxiety or .

Explore further: Neurons can be reprogrammed to switch the emotional association of a memory

More information: Hebbian and neuromodulatory mechanisms interact to trigger associative memory formation, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1421304111

Related Stories

Neurons can be reprogrammed to switch the emotional association of a memory

October 24, 2014
Memories of experiences are encoded in the brain along with contextual and emotional information such as where the experience took place and whether it was positive or negative. This allows for the formation of memory associations ...

Neuroscientists reverse memories' emotional associations

August 27, 2014
Most memories have some kind of emotion associated with them: Recalling the week you just spent at the beach probably makes you feel happy, while reflecting on being bullied provokes more negative feelings.

Scientists discover a new pathway for fear deep within the brain

February 12, 2014
Fear is primal. In the wild, it serves as a protective mechanism, allowing animals to avoid predators or other perceived threats. For humans, fear is much more complex. A normal amount keeps us safe from danger. But in extreme ...

Our brain dissociates emotional response from explicit memory in fearful situations

November 5, 2014
Researchers at the Cognition and Brain Plasticity group of the Bellvitge Biomedical Research Institute (IDIBELL) and the University of Barcelona have been tracking the traces of implicit and explicit memories of fear in human. ...

Total recall: The science behind it

November 13, 2014
Is it possible to change the amount of information the brain can store? Maybe, according to a new international study led by the Research Institute of the McGill University Health Centre (RI-MUHC). Their research has identified ...

How connections in the brain must change to form memories could help to develop artificial cognitive computers

November 7, 2012
Exactly how memories are stored and accessed in the brain is unclear. Neuroscientists, however, do know that a primitive structure buried in the center of the brain, called the hippocampus, is a pivotal region of memory formation. ...

Recommended for you

Faulty cell signaling derails cerebral cortex development, could it lead to autism?

September 20, 2017
As the embryonic brain develops, an incredibly complex cascade of cellular events occur, starting with progenitors - the originating cells that generate neurons and spur proper cortex development. If this cascade malfunctions ...

Research redefines proteins' role in the development of spinal sensory cells

September 19, 2017
A recent study led by Samantha Butler at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA has overturned a common belief about how a certain class of proteins in the spinal cord regulate ...

The brain at work: Spotting half-hidden objects

September 19, 2017
How does a driver's brain realize that a stop sign is behind a bush when only a red edge is showing? Or how can a monkey suspect that the yellow sliver in the leaves is a round piece of fruit?

Team discovers how to train damaging inflammatory cells to promote repair after stroke

September 19, 2017
White blood cells called neutrophils are like soldiers in your body that form in the bone marrow and at the first sign of microbial attack, head for the site of injury just as fast as they can to neutralize invading bacteria ...

Epileptic seizures show long-distance effects

September 19, 2017
The area in which an epileptic seizure starts in the brain, may be small but it reaches other parts of the brain at distances of over ten centimeters. That distant activity, in turn, influences the epileptic core, according ...

Study uncovers markers for severe form of multiple sclerosis

September 18, 2017
Scientists have uncovered two closely related cytokines—molecules involved in cell communication and movement—that may explain why some people develop progressive multiple sclerosis (MS), the most severe form of the disease. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.