Researchers reveal biomarker for guiding prostate cancer treatment

October 12, 2017, Cleveland Clinic
Micrograph showing prostatic acinar adenocarcinoma (the most common form of prostate cancer) Credit: Wikipedia

Back-to-back discoveries from Cleveland Clinic demonstrate for the first time how a testosterone-related genetic abnormality can help predict individual patient responses to specific prostate cancer therapies.

The studies, published in the October 12 issue of JAMA Oncology, suggest that men who inherit this would benefit from a personalized treatment plan that targets specific hormonal pathways.

The research teams, led by Nima Sharifi, M.D., of the Cleveland Clinic Lerner Research Institute, studied the role of the HSD3B1(1245C) genetic variant in two different prostate cancer patient populations, following (ADT). ADT works by blocking prostate cancer's supply of male hormones in the testes. It is a cornerstone treatment for recurrent prostate cancer, but it often stops working, allowing cancer to progress and spread. In 2013, Dr. Sharifi discovered that prostate cancer cells with the genetic abnormality survive ADT by producing their own androgens.

In the first new study, Dr. Sharifi and colleagues from Memorial Sloan Kettering Cancer Center, Harvard/Dana-Farber Cancer Institute and University of Michigan Comprehensive Cancer Center analyzed 213 men whose prostate cancer recurred after radiation therapy and underwent ADT. They found for the first time that following radiation and ADT, cancer was much more likely to spread—and spread rapidly—in men who had the HSD3B1(1245C) variant.

The second study, performed in collaboration with researchers at University of California San Francisco, examined a group of 90 men with metastatic that had become resistant to ADT. These patients were subsequently treated with the drug ketoconazole, which blocks the production of androgens outside of the testes (e.g., those developed by that are evading ADT treatment).

Surprisingly, men with the genetic anomaly fared better on ketoconazole than men without the variant. This finding raises the possibility that targeting variant tumors' backup androgen supply (outside of the testes) could be a successful strategy when ADT fails.

"We hypothesized that HSD3B1(1245C) variant tumors become resistant to ADT because they have a backup supply of androgens," said Dr. Sharifi. "However, relying on these extra-gonadal androgens makes them more sensitive to ketoconazole."

These discoveries complement earlier studies and support the use of HSD3B1(1245C) as a predictive biomarker to help guide critical treatment decisions. While the outlook of patients with this gene variant is poor, these studies offer hope for a new treatment strategy for these men, and more studies are needed using next-generation androgen inhibitors, such as abiraterone and enzalutamide.

"We are hopeful that these findings will lead to more personalized and effective treatments for ," said Dr. Sharifi. "If men carry a specific testosterone-related genetic abnormality we may be able to personalize their therapy and treat specific patients more aggressively."

Dr. Sharifi is also a member of the Glickman Urological and Kidney Institute and Taussig Cancer Institute of Cleveland Clinic. He holds the Kendrick Family Chair for Prostate Cancer Research at Cleveland Clinic and co-directs Cleveland Clinic's Center of Excellence for Prostate Cancer Research. In 2017 he received a Top Ten Clinical Research Achievement award from the Clinical Research Forum for his landmark discovery that men who carry the HSD3B1(1245C) variant are more likely to die from their disease.

Explore further: Researcher discovers metabolite of prostate cancer drug more effective at treating aggressive tumors

Related Stories

Researcher discovers metabolite of prostate cancer drug more effective at treating aggressive tumors

June 1, 2015
Cleveland: Cleveland Clinic researchers have discovered for the first time that a metabolite of an FDA-approved drug for metastatic prostate cancer, abiraterone (Abi), has more anti-cancer properties than its precursor. The ...

Team discovers similarities between next-generation prostate cancer drugs

June 22, 2017
Cleveland Clinic researchers have shown for the first time how a class of advanced prostate cancer drugs are processed in the body and how their anti-tumor activity might change depending on how they are metabolized. Their ...

Study finds genetic mutation in castration-resistant prostate cancer

August 29, 2013
The mutation occurs in the androgen-synthesizing enzyme 3βHSD1 in castration-resistant prostate cancer (CRPC), according to research published online today in Cell. This mutation enables the tumor to make its own supply ...

A new method for prostate cancer imaging

July 21, 2016
Prostate cancer is one of the most common cancers in men. Tumor growth is critically regulated by the androgen receptor, and treatment strategies to lower androgens, such as testosterone, are a mainstay of clinical treatment. ...

Study uncovers an additional strategy for targeting treatment-resistant prostate cancer

May 2, 2017
Prostate cancer cells depend on signaling through the androgen receptor (AR) to grow and survive. Many anti-cancer therapies that target ARs are initially successful in patients, including a class of drugs known as CYP17A1 ...

Recommended for you

Study tracks evolutionary transition to destructive cancer

February 23, 2018
Evolution describes how all living forms cope with challenges in their environment, as they struggle to persevere against formidable odds. Mutation and selective pressure—cornerstones of Darwin's theory—are the means ...

Putting black skin cancer to sleep—for good

February 22, 2018
An international research team has succeeded in stopping the growth of malignant melanoma by reactivating a protective mechanism that prevents tumor cells from dividing. The team used chemical agents to block the enzymes ...

Cancer risk associated with key epigenetic changes occurring through normal aging process

February 22, 2018
Some scientists have hypothesized that tumor-promoting changes in cells during cancer development—particularly an epigenetic change involving DNA methylation—arise from rogue cells escaping a natural cell deterioration ...

NEJM reports positive results for larotrectinib against TRK-fusion cancer

February 22, 2018
In 2013, the labs of University of Colorado Cancer Center investigator Robert C. Doebele, MD, PhD, and Dana-Farber Cancer Institute investigator Pasi A. Jänne, MD, PhD reported in Nature Medicine the presence of TRK gene ...

New therapeutic gel shows promise against cancerous tumors

February 21, 2018
Scientists at the UNC School of Medicine and NC State have created an injectable gel-like scaffold that can hold combination chemo-immunotherapeutic drugs and deliver them locally to tumors in a sequential manner. The results ...

Five novel genetic changes linked to pancreatic cancer risk

February 21, 2018
In what is believed to be the largest pancreatic cancer genome-wide association study to date, researchers at the Johns Hopkins Kimmel Cancer Center and the National Cancer Institute, and collaborators from over 80 other ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.