Study finds genetic mutation in castration-resistant prostate cancer

August 29, 2013, Cleveland Clinic

The mutation occurs in the androgen-synthesizing enzyme 3βHSD1 in castration-resistant prostate cancer (CRPC), according to research published online today in Cell. This mutation enables the tumor to make its own supply of androgens, a hormone that fuels the growth of the prostate cancer.

Prostate cancer requires a constant supply of androgens in order to sustain itself. The current standard of care for patients with metastatic is medical castration, the ability to interfere with the body's production of testosterone (androgens) using medications that disrupt the process. Oftentimes, metastatic prostate cancer flourishes despite the lack of testosterone in the , creating CRPC. These tumors are able to exist without the body's supply of by creating androgens within the tumor cell; however, increased synthesis has not yet been attributable to any known . The Cleveland Clinic discovery shows that the 3?HSD1 mutation makes this enzyme hyperactive to create androgens.

"This discovery gives us the ability to identify molecular subtypes of prostate cancer known to resist treatment. By finding the mutated enzyme, we can now investigate treatments that block it. This kind of strategy is the crux of personalized medicine which is currently used as the standard of care for some forms of and ," said Nima Sharifi, M.D., Kendrick Family Chair for Prostate Cancer Research at Cleveland Clinic, who led the research.

The 3?HSD1 mutation can occur within CRPC tumors and it can also come from germline DNA, which is inherited from maternal and paternal sources.

The research found that laboratory models of human prostate cancer fall into two categories of androgen synthesis: those that make androgens slowly and those that do so rapidly. Next, they found that the 3?HSD1 mutation explains the difference between these two categories and that DNA from some patient tumors also contains this mutation. The mutation works by opening the floodgates to androgen synthesis, essentially throwing fuel on the fire that promotes tumor progression.

In an era of personalized cancer care, there is increased focus on defining and treating cancer by its genetic abnormalities. Tumor-promoting enzyme mutations in several cancers have been identified and, subsequently, have led to the development of targeted drug therapies, improving outcomes for patients.

"The past decade has seen an explosion of molecularly targeted therapies that are matched to specific mutations in a given patient's tumor," says Dr. Sharifi. "However, no drug-targeting based on enzyme mutations exists for the standard treatment of metastatic CRPC. With this finding, we have the opportunity for matching a mutant disease-driving biomarker with a pharmacologic inhibitor."

Prostate cancer is the most common cancer in men, with nearly 240,000 new cases diagnosed each year in the United States. According to the American Cancer Society, there will be an estimated 30,000 deaths due to prostate cancer in 2013. Almost every man who dies of prostate cancer dies with castration-resistant prostate cancer.

Explore further: New medication treats drug-resistant prostate cancer in the laboratory

Related Stories

New medication treats drug-resistant prostate cancer in the laboratory

June 17, 2013
A new drug called pyrvinium pamoate inhibits aggressive forms of prostate cancer that are resistant to standard drugs, according to a study conducted in an animal model. The results will be presented Monday at The Endocrine ...

Team finds potential clue associated with aggressive prostate cancer

August 20, 2013
Prostate cancer is one of the most common forms of cancer in men and the leading cause of cancer deaths in white, African-American and Hispanic men, according to the Centers for Disease Control. Current treatment of prostate ...

Researchers find new culprit in castration-resistant prostate cancer

December 13, 2012
Scientists at Dana-Farber Cancer Institute have discovered a molecular switch that enables advanced prostate cancers to spread without stimulation by male hormones, which normally are needed to spur the cancer's growth. They ...

New direction for prostate cancer research a world first

June 3, 2013
Researchers at the University of Adelaide are spearheading a new direction in prostate cancer research, with the potential for new treatments of the disease.

Researchers identify novel class of drugs for prostate cancers

May 28, 2013
A new study on prostate cancer describes a novel class of drugs developed by UT Southwestern Medical Center researchers that interrupts critical signaling needed for prostate cancer cells to grow.

Recommended for you

New approach attacks 'undruggable' cancers from the outside in

January 23, 2018
Cancer researchers have made great strides in developing targeted therapies that treat the specific genetic mutations underlying a patient's cancer. However, many of the most common cancer-causing genes are so central to ...

Study: Cells of three advanced cancers die with drug-like compounds that reverse chemo failure

January 23, 2018
Researchers at Southern Methodist University have discovered three drug-like compounds that successfully reverse chemotherapy failure in three of the most commonly aggressive cancers—ovarian, prostate and breast.

'Hijacker' drives cancer in some patients with high-risk neuroblastoma

January 23, 2018
Researchers have identified mechanisms that drive about 10 percent of high-risk neuroblastoma cases and have used a new approach to show how the cancer genome "hijacks" DNA that regulates other genes. The resulting insights ...

Enzyme inhibitor combined with chemotherapy delays glioblastoma growth

January 23, 2018
In animal experiments, a human-derived glioblastoma significantly regressed when treated with the combination of an experimental enzyme inhibitor and the standard glioblastoma chemotherapy drug, temozolomide.

Researchers identify a protein that keeps metastatic breast cancer cells dormant

January 23, 2018
A study headed by ICREA researcher Roger Gomis at the Institute for Research in Biomedicine (IRB Barcelona) has identified the genes involved in the latent asymptomatic state of breast cancer metastases. The work sheds light ...

Boosting cancer therapy with cross-dressed immune cells

January 22, 2018
Researchers at EPFL have created artificial molecules that can help the immune system to recognize and attack cancer tumors. The study is published in Nature Methods.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.