Study reveals key molecular link in major cell growth pathway

October 19, 2017, Whitehead Institute for Biomedical Research

A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which involves a critical cellular growth pathway known as mTOR, sheds light on a key aspect of cells' metabolism that involves tiny cellular compartments, called lysosomes, and harnesses a sophisticated technology for probing their biochemical content. The researchers' findings also implicate a new protein, SLC38A9, as a potential drug target in pancreatic cancer. Their study appears in the October 19th issue of the journal Cell.

"SLC38A9 is a really elegant protein that ties together two critical functions: activating a key pathway that controls cell growth and releasing the substrates, namely amino acids, needed for that growth," says senior author David Sabatini, a Member of Whitehead Institute, a professor of biology at Massachusetts Institute of Technology, and investigator with the Howard Hughes Medical Institute. "This was a totally unexpected finding, one that has important implications for human diseases, including pancreatic cancer."

Amino acids are one of the basic building blocks of life. When strung together in different combinations, they make a stunning array of proteins that carry out a variety of biological functions. Amino acids typically accumulate in two locations within : either freely floating within the cellular milieu or sequestered inside the lysosomes. For the last decade, Sabatini and his laboratory have studied the mechanisms by which cells sense the levels of amino acids at these sites and translate that information into subsequent go/no-go decisions about growth.

About three years ago, Sabatini and his colleagues, as well as other scientists, discovered SLC38A9, a protein embedded within the outer surface of lysosomes. Although its function was not entirely clear at the time, the researchers suspected it worked as a kind of sensor by reading out the levels of amino acids within lysosomes (specifically the amino acid arginine) and then activating downstream signals for growth.

To clarify how SLC38A9 works, the researchers, including the study's first authors Gregory Wyant and Monther Abu-Remaileh, eliminated or "knocked out" its function in cells. Since they hypothesized that it worked passively as an amino detector, they did not expect to see major changes in the levels of amino acids inside the lysosomes. But that is precisely what they found—especially for the so-called essential amino acids, which cannot be synthesized by the human body and therefore must be acquired from food. When SLC38A9 function was absent, the levels of these essential amino acids in lysosomes went up. And when Wyant and his colleagues boosted the protein's function to higher than normal levels, they observed the opposite effect.

"These were some big clues that SLC38A9 was doing more than we imagined, and they suggested that SLC38A9 could transport amino acids out of the lysosome," says Wyant, a graduate student in Sabatini's laboratory. The researchers confirmed this suspicions in follow-up experiments, which revealed that SLC38A9 is necessary for these , such as leucine, exit from lysosomes.

The amino acids needed to fuel cell growth are often recycled from intact proteins. That includes proteins found inside cells (through a process called autophagy), as well as those found outside (known as macropinocytosis). Both of these recycling streams converge on the lysosome, and, as Sabatini's team discovered, depend on SLC38A9 activity.

Pancreatic cancer cells are known to be highly dependent on the flow of from the . When the researchers knocked out SLC38A9 function in these cells, either in human cell lines or mouse models, tumor growth was significantly reduced. In contrast, normal cells appeared to be unaffected.

"Our results suggest that an inhibitor of SLC38A9 may provide a way to specifically target cells," says Sabatini.

Yet before such therapeutic possibilities can be explored, additional research on SLC38A9 is needed, including three-dimensional studies of the protein as well as a deeper understanding of its regulation. These will help the researchers develop a more complete picture of its molecular abilities—an important stepping-stone toward developing drugs that can disable it.

A key capability that underlies the new Cell study is the technical wherewithal to peer into lysosomes and analyze their biochemical makeup. These structures make up only a tiny fraction of the overall volume of a cell—just 2 percent—and their content is highly dynamic. Abu-Remaileh and Wyant pioneered a strategy for rapidly isolating lysosomes and detecting the metabolites within them.

"We would not have discovered the majority of these findings without this method," said Abu-Remaileh, a postdoctoral fellow in Sabatini's laboratory. "It is allowing us to address some really important and longstanding questions about the biology of lysosomes."

Explore further: Scientists identify first nutrient sensor in key growth-regulating metabolic pathway

More information: Wyant G, Abu-Remaileh M, et al. "mTORC1 activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient." Cell DOI: 10.1016/j.cell.2017.09.046

Related Stories

Scientists identify first nutrient sensor in key growth-regulating metabolic pathway

January 7, 2015
Known as much for its complexity as its vital role in regulating cellular and organismal growth, the mechanistic target of rapamycin complex 1 (mTORC1) pathway has seemingly been acting in mysterious ways.

Scientists discover essential amino acid sensor in key growth-regulating metabolic pathway

October 8, 2015
Whitehead Institute scientists have at last answered the long-standing question of how the growth-regulating pathway known as mechanistic target of rapamycin complex 1 (mTORC1) detects the presence of the amino acid leucine—itself ...

Scientists identify sensor that modulates key metabolic pathway

March 11, 2016
Only recently have scientists begun to tease apart the molecular links between specific nutrients and mTORC1, a cellular signaling pathway that controls growth and metabolism. Now Whitehead Institute researchers have elucidated ...

Key to expanding genetic code described

October 17, 2017
Yale scientists have described the atomic structure of a protein that is the key tool in efforts by synthetic biologists to expand the genetic code.

Starving pancreatic cancer cells: Scientists identify potential pancreatic cancer target

October 17, 2016
Researchers have found that a protein called SLC6A14 is overexpressed by several fold in pancreatic tumors taken from patients and in cancerous pancreatic cells lines compared with normal pancreatic tissue or normal pancreatic ...

Amino acids in diet could be key to starving cancer

April 19, 2017
Cutting out certain amino acids—the building blocks of proteins—from the diet of mice slows tumour growth and prolongs survival, according to new research published in Nature.

Recommended for you

Gene plays critical role in noise-induced deafness

October 19, 2018
In experiments using mice, a team of UC San Francisco researchers has discovered a gene that plays an essential role in noise-induced deafness. Remarkably, by administering an experimental chemical—identified in a separate ...

Functional engineered oesophagus could pave way for clinical trials 

October 18, 2018
The world's first functional oesophagus engineered from stem cells has been grown and successfully transplanted into mice, as part of a pioneering new study led by UCL.

New findings cast light on lymphatic system, key player in human health

October 16, 2018
Scientists at the Oklahoma Medical Research Foundation have broken new ground in understanding how the lymphatic system works, potentially opening the door for future therapies.

New model suggests cuffless, non-invasive blood pressure monitoring possible using pulse waves

October 16, 2018
A large team of researchers from several institutions in China and the U.S. has developed a model that suggests it should be possible to create a cuffless, non-invasive blood pressure monitor based on measuring pulse waves. ...

Age-related increase in estrogen may cause common men's hernia

October 16, 2018
An age-related increase in estrogen may be the culprit behind inguinal hernias, a condition common among elderly men that often requires corrective surgery, according to a Northwestern Medicine study was published Oct. 15 ...

Income and wealth affect the mental health of Australians, study shows

October 16, 2018
Australians who have higher incomes and greater wealth are more likely to experience better mental health throughout their lives, new research led by the Bankwest Curtin Economics Centre has found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.