Amino acids in diet could be key to starving cancer

April 19, 2017
Credit: CC0 Public Domain

Cutting out certain amino acids—the building blocks of proteins—from the diet of mice slows tumour growth and prolongs survival, according to new research published in Nature.

Researchers at the Cancer Research UK Beatson Institute and the University of Glasgow found that removing two non-essential —serine and glycine—from the diet of mice slowed the development of lymphoma and intestinal .

The researchers also found that the special diet made some cancer cells more susceptible to chemicals in cells called reactive oxygen species.

Chemotherapy and radiotherapy boost levels of these chemicals in the cells, so this research suggests a specially formulated diet could make conventional cancer treatments more effective.

The next stage would be to set up clinical trials with cancer patients to assess the feasibility and safety of such a treatment.

Dr Oliver Maddocks, a Cancer Research UK scientist at the University of Glasgow, said: "Our findings suggest that restricting specific amino acids through a controlled diet plan could be an additional part of treatment for some cancer patients in future, helping to make other treatments more effective.

Professor Karen Vousden, Cancer Research UK's chief scientist and study co-author said: "This kind of restricted diet would be a short term measure and must be carefully controlled and monitored by doctors for safety. Our diet is complex and protein—the main source of all amino acids - is vital for our health and well-being. This means that patients cannot safely cut out these specific amino acids simply by following some form of home-made diet."

Amino acids are the that cells need to make proteins. While healthy cells are able to make sufficient serine and glycine, cancer are much more dependent on getting these vital amino acids from the diet.

However, the study also found that the diet was less effective in tumours with an activated Kras gene, such as most pancreatic cancer, because the faulty gene boosted the ability of the to make their own serine and glycine. This could help to select which tumours could be best targeted by diet therapy.

Dr Emma Smith, science communication manager at Cancer Research UK, said: "This is a really interesting look at how cutting off the supply of nutrients essential to cancer cell growth and division could help restrain tumours.

"The next steps are clinical trials in people to see if giving a specialised that lacks these amino acids is safe and helps slow as seen in mice. We'd also need to work out which patients are most likely to benefit, depending on the characteristics of their cancer."

Explore further: Researchers find out what cancer cells are hungry for

More information: Modulating the therapeutic response of tumours to dietary serine and glycine starvation, Nature (2017). nature.com/articles/doi:10.1038/nature22056

Related Stories

Researchers find out what cancer cells are hungry for

February 15, 2016
Growing tumour cells are always hungry. Researchers of prof. Reuven Agami's group at the Antoni van Leeuwenhoek have developed a method that uncovers for individual tumours which amino acid is most limiting an thus most needed ...

Starving pancreatic cancer cells: Scientists identify potential pancreatic cancer target

October 17, 2016
Researchers have found that a protein called SLC6A14 is overexpressed by several fold in pancreatic tumors taken from patients and in cancerous pancreatic cells lines compared with normal pancreatic tissue or normal pancreatic ...

Cancer cells grow by exploiting their neighbours

January 25, 2017
Researchers at the University of Oslo and Oslo University Hospital have discovered that cancer cells grow by stealing energy from neighbouring cells.

Study shows starving cancer cells of key nutrient slows tumour growth

December 18, 2012
Depriving cancer cells of a key amino acid dramatically cuts their ability to grow and multiply, according to a new Cancer Research UK study published in Nature.

Withholding amino acid depletes blood stem cells, researchers say

October 20, 2016
A dietary approach to depleting blood stem cells may make it possible to conduct bone marrow transplantations without the use of chemotherapy or radiation therapy, according to researchers at the Stanford University School ...

Recommended for you

Researchers find novel mechanism of resistance to anti-cancer drugs

October 17, 2017
The targeted anti-cancer therapies cetuximab and panitumumab are mainstays of treatment for advanced colorectal cancer, the second leading cause of cancer-related deaths in the United States. However, many patients have tumors ...

Biology of childhood brain tumor subtypes offers clues to precision treatments

October 17, 2017
Researchers investigating pediatric low-grade gliomas (PLGG), the most common type of brain tumor in children, have discovered key biological differences in how mutated genes combine with other genes to drive this childhood ...

New assay may boost targeted treatment of non-Hodgkin lymphoma

October 17, 2017
Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer and the most frequently diagnosed non-Hodgkin lymphoma worldwide (nearly 40% of cases). Recent advancements indicate that both the prognosis and choice of treatment ...

Bolstering fat cells offers potential new leukemia treatment

October 16, 2017
Killing cancer cells indirectly by powering up fat cells in the bone marrow could help acute myeloid leukemia patients, according to a new study from McMaster University.

Study reveals complex biology, gender differences, in kidney cancer

October 13, 2017
A new study is believed to be the first to describe the unique role of androgens in kidney cancer, and it suggests that a new approach to treatment, targeting the androgen receptor (AR), is worth further investigation.

Cholesterol byproduct hijacks immune cells, lets breast cancer spread

October 12, 2017
High cholesterol levels have been associated with breast cancer spreading to other sites in the body, but doctors and researchers don't know the cause for the link. A new study by University of Illinois researchers found ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.