Computational simulations suggest multiple sclerosis is a single disease

October 26, 2017, Public Library of Science
The diverse phenotype of Multiple Sclerosis is the consequence of the dynamic damage to the brain. Chronic autoimmune inflammatory damage to the brain produces waves of demyelination (blue line in the graph) and cumulative axonal loss (green line in the graph) in different intensities along time leading to all MS phenotypes. Credit: Dr Santiago Ortiz-Perez, from the Institute of Ophthalmology and Center of Neuroimmunology, IDIBAPS - Hospital Clinic, University of Barcelona.

New research supports the idea that multiple sclerosis (MS), which has widely varying symptoms and progression in different patients, is nonetheless a single disease with common underlying mechanisms. The findings are published in PLOS Computational Biology.

MS is an autoimmune disease in which the immune system disrupts the function of nerve cells in the spinal cord and brain. This can cause a variety of problems, including blurred vision, memory problems, paralysis, and more. Symptoms and patterns of over time can vary between , leading to suggestions that MS may actually consist of two or more different diseases.

Ekaterina Kotelnikova of the IDIBAPS - University of Barcelona, Spain, and colleagues hypothesized that MS is a single disease with multiple results in patients, all driven by the same underlying biological mechanism: immune system attack of the protective fibers shielding nerve cells and loss of the axons used by nerve cells to communicate with each other.

To explore this hypothesis, the researchers developed a mathematical model of MS based on experimental data from 66 patients who had been followed for up to 20 years. Using the model, they were able to perform computational simulations of the different known involved in the disease.

To test the validity of the model, the scientists ran simulations using data from a second group of 120 MS patients. They found that, by changing the intensity of the underlying biological processes involved in MS at distinct times, they were able to successfully reproduce the variability of disease courses seen in these patients.

These results support the hypothesis that that all the symptoms and disease courses observed in MS patients are produced by the same underlying mechanisms that damage over time. This implies that, even though it may follow different patterns, MS will worsen over time for all patients.

"This concept has significant therapeutic implications and will drive the development of new therapies because it implies that MS will produce significant disability if suffered for enough time in all patients," says co-author Dr. Pablo Villoslada, Head of the IDIBAPS research group in Pathogenesis and new treatments in multiple sclerosis and coordinator of the study. "Indeed, preventing relapses, although very important, will be not enough to achieve good control of the ."

Explore further: A novel biomarker for multiple sclerosis

More information: Ekaterina Kotelnikova et al, Dynamics and heterogeneity of brain damage in multiple sclerosis, PLOS Computational Biology (2017). DOI: 10.1371/journal.pcbi.1005757

Related Stories

A novel biomarker for multiple sclerosis

September 27, 2017
An article published in Experimental Biology and Medicine (Volume 242, Issue 15, September, 2017) identifies opioid growth factor (OGF) as a novel biomarker for the onset and progression of multiple sclerosis (MS). The study, ...

Gene immunotherapy protects against multiple sclerosis in mice

September 21, 2017
A potent and long-lasting gene immunotherapy approach prevents and reverses symptoms of multiple sclerosis in mice, according to a study published September 21st in the journal Molecular Therapy. Multiple sclerosis is an ...

Cancer drug a possible treatment for multiple sclerosis

February 21, 2013
(Medical Xpress)—A drug that is currently used for cancer can relieve and slow down the progression of the autoimmune disease multiple sclerosis (MS) in rats, according to a new study published in PLOS ONE. The discovery, ...

An antibody-based drug for multiple sclerosis

July 20, 2016
Inserm Unit U919, directed by Prof. Denis Vivien ("Serine Proteases and Physiopathology of the Neurovascular Unit") has developed an antibody with potential therapeutic effects against multiple sclerosis. The study, directed ...

Serum micoRNAs may serve as biomarkers for multiple sclerosis

January 23, 2017
MicroRNAs are small RNA molecules that influence basic cellular processes and have been proposed as biomarkers for the diagnosis, progression and treatment of multiple sclerosis. In a new study conducted at the Ann Romney ...

MS treatment that 'resets' immune system may halt disease progression for at least five years

February 20, 2017
A type of treatment for multiple sclerosis that 'resets' the immune system may stop progression of the disease in nearly half of patients.

Recommended for you

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.