Higher estrogen levels linked to increased alcohol sensitivity in brain's 'reward center'

November 6, 2017
Amy Lasek, assistant professor of psychiatry, UIC College of Medicine. Credit: Jenny Fontaine.

The reward center of the brain is much more attuned to the pleasurable effects of alcohol when estrogen levels are elevated, an effect that may underlie the development of addiction in women, according to a study on mice at the University of Illinois at Chicago.

Led by Amy Lasek, assistant professor of psychiatry in the UIC College of Medicine, researchers found that in a region of the brain called the ventral tegmental area, or VTA (also known as the ""), fired most rapidly in response to alcohol when their estrogen levels were high. This response, according to their findings published online in the journal PLOS ONE, is mediated through receptors on dopamine-emitting neurons in the VTA.

"When estrogen levels are higher, alcohol is much more rewarding," said Lasek, who is the corresponding author on the paper and a researcher in the UIC Center for Alcohol Research in Epigenetics. "Women may be more vulnerable to the effects of alcohol or more likely to overindulge during certain stages of their cycle when estrogen levels are higher, or may be more likely to seek out alcohol during those stages."

Studies indicate that gender differences in psychiatric disorders, including addiction, are influenced by estrogen, one of the primary female sex hormones. Women are more likely to exhibit greater escalation of abuse of alcohol and other drugs, and are more prone to relapse in response to stress and anxiety.

The VTA helps evaluate whether something is valuable or good. When neurons in this area of the brain are stimulated, they release dopamine—a powerful neurotransmitter responsible for feelings of wellness—and, in large doses, euphoria. When something good is encountered—for example, chocolate—the neurons in the VTA fire more rapidly, enforcing reward circuitry that encodes the idea that chocolate is enjoyable and something to be sought out. Over time, the VTA neurons fire more quickly at the sight, or even thought of, chocolate, explained Lasek. In addiction, VTA neurons are tuned into drugs of abuse, and fire more quickly in relation to consuming or even thinking about drugs, driving the person to seek them out—often at the expense of their own health, family, friends and jobs.

Many animal studies have shown that alcohol increases the firing of dopamine-sensitive neurons in the VTA, but little is known about exactly why this occurs.

Lasek and her colleagues examined the relationship between estrogen, alcohol and the VTA in female mice. They used naturally cycling mice that were allowed to go through their normal estrous cycles, akin to the menstrual cycle in women.

Mice were evaluated to determine when they entered diestrus—the phase in the estrous cycle when estrogen levels are close to their peak.

"In mice in diestrus, estrogen levels increase to about 10 times higher than they are in estrus, the phase in which ovulation occurs and estrogen levels drop," Lasek said.

VTAs were taken from mice in both estrus and diestrus and kept alive in special chambers. Electrodes recorded the activity of individual dopamine-sensitive neurons in the VTA. Next, the researchers added alcohol to the chamber. Activity increased twice as much in neurons from mice in diestrus compared to the response of neurons from mice in estrus.

Lasek and her colleagues then blocked estrogen receptors on dopamine-sensitive neurons in VTA in mice in estrus and diestrus. With the blocker present, the response to alcohol in neurons from mice in diestrus was significantly lower compared with neurons where estrogen receptors remained functional. The blocker reduced the alcohol response to levels seen in mice in estrus. The responses to alcohol in neurons from in estrus were unaffected by the estrogen receptor blocker.

"The increased reward response to alcohol we see when estrogen levels are high is mediated through receptors for estrogen in the VTA," said Mark Brodie, professor of physiology and biophysics in the UIC College of Medicine and a co-author on the paper.

Lasek believes that the increased sensitivity to alcohol in the VTA when peak may play a significant role in the development of addiction in women.

"We already know that binge drinking can lead to lasting changes in the brain, and in women, those changes may be faster and more significant due to the interaction we see between alcohol, the VTA and ," Lasek said. "Binge drinking can increase the risk of developing alcoholism, so women need to be careful about how much alcohol they drink. They should be aware that they may sometimes inadvertently over-consume alcohol because the area of the brain involved in reward is responding very strongly."

Explore further: Researchers reveal connection between female estrogen cycle and cocaine addiction

More information: Bertha J. Vandegrift et al, Estradiol increases the sensitivity of ventral tegmental area dopamine neurons to dopamine and ethanol, PLOS ONE (2017). DOI: 10.1371/journal.pone.0187698

Related Stories

Researchers reveal connection between female estrogen cycle and cocaine addiction

January 10, 2017
Hormonal fluctuations women undergo make them particularly sensitive, compared to men, to the addictive properties of cocaine, according to a study conducted at the Icahn School of Medicine at Mount Sinai and published January ...

Why does prenatal alcohol exposure increase the likelihood of addiction?

July 7, 2017
One of the many negative consequences when fetuses are exposed to alcohol in the womb is an increased risk for drug addiction later in life. Neuroscientists in the University at Buffalo Research Institute on Addictions are ...

Why binge drinking cause binge eating

January 11, 2017
(Medical Xpress)—A team of researchers affiliated with several institutions in the U.K. has found what they believe is the reason why consumption of alcohol leads to hunger pangs and excessive eating. In their paper published ...

Immune system linked to alcohol drinking behaviour

September 15, 2017
Researchers from the University of Adelaide have found a new link between the brain's immune system and the desire to drink alcohol in the evening.

Protein links alcohol abuse and changes in brain's reward center

September 8, 2017
When given access to alcohol, over time mice develop a pattern similar to what we would call "problem drinking" in people, but the brain mechanisms that drive this shift have been unclear. Now a team of UC San Francisco researchers ...

Stressed-out rats consume more alcohol, revealing related brain chemistry

November 4, 2016
Stress, defined broadly, is a well-known risk factor for later alcohol abuse; however, the brain chemistry underlying interactions between stress and alcohol remain largely unknown. Reinforcement of addictive substance use ...

Recommended for you

Small but distinct differences among species mark evolution of human brain

November 23, 2017
The most dramatic divergence between humans and other primates can be found in the brain, the primary organ that gives our species its identity.

Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted ...

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

New research suggests high-intensity exercise boosts memory

November 22, 2017
The health advantages of high-intensity exercise are widely known but new research from McMaster University points to another major benefit: better memory.

Schizophrenia originates early in pregnancy, 'mini-brain' research suggests

November 20, 2017
Symptoms of schizophrenia usually appear in adolescence or young adulthood, but new research reveals that the brain disease likely begins very early in development, toward the end of the first trimester of pregnancy. The ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.