New insights into protein reveal potential therapy for breast cancer

November 29, 2017 by Anna Williams, Northwestern University
cancer
Killer T cells surround a cancer cell. Credit: NIH

Northwestern Medicine scientists have discovered a new function for a protein called SET1B in the cytoplasm of cells, and demonstrated that targeting its role in regulating cellular metabolism may be able to treat triple-negative breast cancer.

The findings were published in the journal Genes and Development.

"This is a major discovery," said principal investigator Ali Shilatifard, PhD, the Robert Francis Furchgott Professor and chair of Biochemistry and Molecular Genetics.

Lu Wang, PhD, a postdoctoral fellow in Shilatifard's laboratory, was the first author of the study.

SET1B is one of the six members of COMPASS, a family of enzymes which was first characterized by Shilatifard close to 20 years ago. The complex is known to be critical to gene expression: COMPASS catalyzes a key molecular event called histone methylation, which influences whether genes are turned on or off.

Dysregulation and mutations in some COMPASS genes have since been implicated in many types of human diseases, including cancer. But the function of SET1B, and its relationship with cancer, had remained unclear.

In the current study, the scientists first discovered that the majority of SET1B resides in the cytoplasm of cells—a surprising finding, given that all other members of COMPASS are found mainly in the nucleus.

"SET1B is also essential to the viability of different cancer cells, especially human ," Wang explained. "When the gene is deleted in using the gene-editing tool CRISPR, the cells do not survive. Interestingly, normal epithelia cells are fine with the depletion of SET1B."

To further understand SET1B's link to cancer growth, the scientists demonstrated that loss of SET1B leads to increased expression of several genes that modulate fatty acid metabolism—indicating a novel function for SET1B in regulating metabolic processes.

The Shilatifard laboratory also explored how these findings might offer novel strategies for treating cancer.

"At first, we thought about how to target SET1B—but a crystal structure of this 300kd protein doesn't exist, so we can't design a small molecule targeting it," Wang explained. "So we looked at the major downstream genes to target instead."

ADIPOR1 is one of the the scientists discovered was regulated by SET1B. ADIPOR1 is the receptor for adiponectin, a hormone that is known to have anti-diabetic effects. A Japanese research group had already developed a small molecule agonist drug to activate that receptor, called AdipoRon. As reported in Nature in 2013, AdipoRon improved insulin resistance and extend the lifespan of obese diabetic mice.

Given their discovery about the close relationship between SET1B and ADIPOR1, the Northwestern scientists decided to investigate using AdipoRon to treat triple-negative breast cancer. Triple-negative breast cancer is a type of breast cancer that lacks the three receptors targeted in common therapies, and as such, can be difficult to treat.

The team discovered that AdipoRon was capable of killing triple-negative in vitro, and further demonstrated in a mouse model of the cancer that treatment with the drug significantly reduced tumor size and increased animal survival.

Wang noted that the current study is the first to demonstrate how this small molecule drug, which has been used for the treatment of diabetes, could be used to treat human cancer.

In future studies, Shilatifard and his team intend to further analyze clinical data that suggest a correlation between SET1B gene expression and breast cancer patient survival, as well as investigate the development of other compounds that might target SET1B for treatments.

Explore further: Discovering a protein's role in gene expression

More information: Lu Wang et al. A cytoplasmic COMPASS is necessary for cell survival and triple-negative breast cancer pathogenesis by regulating metabolism, Genes & Development (2017). DOI: 10.1101/gad.306092.117

Related Stories

Discovering a protein's role in gene expression

November 10, 2017
Northwestern Medicine scientists have discovered that a protein called BRWD2/PHIP binds to histone lysine 4 (H3K4) methylation—a key molecular event that influences gene expression—and demonstrated that it does so via ...

Researchers discover a new target for 'triple-negative' breast cancer

November 20, 2017
So-called "triple-negative" breast cancer is a particularly aggressive and difficult-to-treat form. It accounts for only about 10 percent of breast cancer cases, but is responsible for about 25 percent of breast cancer fatalities.

Researchers identify potential therapeutic target in aggressive breast cancer cells

November 15, 2017
An especially aggressive breast cancer cell can respond to hormone therapy if they express a specific protein known as estrogen receptor beta (ERβ), according to new research published on the cover of Oncotarget. The findings ...

Understanding key enzyme's role in embryonic development

October 2, 2017
The catalytic activity of an enzyme called Set1A—a protein that is essential to the viability of embryonic stem cells (ESCs)—is not required for ESC self-renewal, according to a Northwestern Medicine study published in ...

Genetic targets to chemo-resistant breast cancer identified

October 3, 2017
Research led by Dr. Carlos Arteaga, Director of the Harold C. Simmons Comprehensive Cancer Center, has identified potential targets for treatment of triple negative breast cancer, the most aggressive form of breast cancer.

Unexpected findings uncover new understanding of gene expression

October 2, 2017
Northwestern Medicine scientists have discovered that the catalytic activity of the fly enzyme Trr and mammalian MLL3/MLL4—members of the COMPASS family of proteins central to gene expression—is not required for proper ...

Recommended for you

A protein called vaccinia-related kinase 1 may help cancer establish itself in new areas of the body during metastasis

September 25, 2018
Sometimes negative results can point researchers in the right direction.

Brigatinib becomes potential new first-line option for ALK-positive non-small lung cancer

September 25, 2018
Results of a 275-patient, multi-national phase III clinical trial known as ALTA-1L published today in the New England Journal of Medicine and presented concurrently in the press program at the International Association for ...

Two studies describe improved approach to bone marrow transplant

September 25, 2018
Two recent studies in the journal Leukemia present a new approach for bone marrow donation and transplant that preclinical laboratory tests suggest could make the life-saving procedure safer and more effective for patients.

Combo therapy of prostatectomy plus radiotherapy may improve survival in prostate cancer

September 25, 2018
High-risk prostate cancer, that which has continued to grow but not yet metastasized, is commonly treated with combination therapies. Each method has pros and cons, but there is little clarity whether one might be more effective ...

Method identified to reduce risk of brain damage in leukemia survivors

September 25, 2018
Children with acute lymphoblastic leukemia (ALL) are at an extremely high risk of sepsis compared to the general population. In the first-published study of its kind, St. Jude Children's Research Hospital scientists have ...

Unhealthy lifestyle responsible for 45,000 predicted cases of bowel cancer in next decade

September 25, 2018
A UNSW study shows that a large proportion of bowel cancers in Australia are preventable by adopting a healthy lifestyle – particularly for men.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.