Sleeping through the snoring: Researchers identify neurons that rouse the brain to breathe

November 2, 2017, Beth Israel Deaconess Medical Center
Credit: CC0 Public Domain

A common and potentially serious sleep disorder, obstructive sleep apnea affects at least one quarter of U.S. adults and is linked to increased risk of diabetes, obesity and cardiovascular disease. In a paper published today in the journal Neuron, researchers at Beth Israel Deaconess Medical Center (BIDMC) identified specific neural circuitry responsible for rousing the brain of mice in simulated apnea conditions. The findings could lead to potential new drug therapies to help patients with obstructive sleep apnea get more rest.

Often but not always marked by loud snoring, occurs when a sleeping person's airway collapses and closes off breathing. Dipping oxygen (O2) levels and rising carbon dioxide (CO2) levels in the blood alert the sleeping brain to the problem, rousing the sleeper just long enough to re-establish breathing.

"A person with apnea wakes up and starts breathing again and this cycle can repeat hundreds of time per night, so the person never gets very deeply asleep," said senior author Clifford B. Saper, MD, Chair of the Department of Neurology at BIDMC. "In the morning, they may not remember that they have not had a restful night's sleep but will feel very tired."

Fragmented sleep can leave people with apnea with significant impairments to cognition, mood and daytime alertness; it may also increase cardiovascular risk. But what if scientists could prevent the brain from rousing itself hundreds of times per night in response to rising CO2 levels, while allowing it to reestablish regular respiration again?

"Our goal was to identify the circuitry responsible for waking the brain up during sleep apnea, which is distinct from the part of the brain that controls breathing," said Saper, who is also the James Jackson Putnam Professor of Neurology and Neuroscience at Harvard Medical School. "If we could keep the brain from waking up during apneas and activate only the part of the brain that opens up the airways, people with would still be able to get a good night's rest."

Using an enclosure with adjustable atmospheric levels of O2 and CO2, Saper and colleagues mimicked the effects of OSA in mice by changing the ratio of the two gases every five minutes for 30 seconds.

Then, Saper and colleagues focused on a subset of neurons - called PBelCGRP cells- known to show activity in response to elevated CO2 levels. The team used mice with these cells genetically-altered in such a way that researchers could activate or suppress the neurons at will using light or drugs to trigger genetic switches. Known as optogenetics and chemogenetics, these experiments demonstrated that activating these cells will wake mice up and keep them up for hours. They also showed that suppressing PBelCGRP cells' activity would let mice sleep even as CO2 levels in the air around them rose. Taken together, these findings show that the PBelCGRP cells wake up the brain and are necessary for arousal.

In the final experiment, the researchers followed the PBelCGRP neurons' long-reaching branches (called axons) to the cells they connect with in other regions of the brain. Without disrupting the cells' entire activity, the researchers switched off PBelCGRP neurons' connection to a key site in the basal forebrain. That resulted in a nearly complete loss of sensitivity to CO2 arousal.

Saper and colleagues note that rising CO2 levels may not be the only factor that repeatedly rouses people with sleep apnea throughout the night. Negative air pressure in the collapsed upper airway may also send "wake-up" messages to the brain via another neuronal circuit. Or PBelCGRP neurons may rouse a sleeping brain in response to a variety of stimuli, not just rising CO2 levels, the researchers suggest. Learning which neurons regulate arousal could allow scientists to develop drugs to treat obstructive sleep apnea and other .

"The long-term goal of this research is to come up with drugs that will affect specific pathways in the ," Saper said. "The next step is to see if we can use drugs to prevent the wake-up response while augmenting the opening of the airway. That way, having an apnea won't wake a person up."

Explore further: Diagnosing sleep apnea

Related Stories

Diagnosing sleep apnea

August 29, 2017
Dear Mayo Clinic: Based on my snoring and from everything I've read, I think I may have sleep apnea. But I don't want to spend a night at the hospital for sleep testing. Is there an easier way to know if I have sleep apnea? ...

Sleep and Alzheimer's disease connection

October 17, 2017
How often do you get a good night's sleep? Centers for Disease Control and Prevention guidelines recommend adults get an average of at least seven hours of sleep a night. Dr. Ronald Petersen, a Mayo Clinic neurologist, says ...

Remede system approved for sleep apnea

October 9, 2017
(HealthDay)—The Remede sleep system, an implanted device that treats central sleep apnea by activating a nerve that sends signals to the diaphragm to stimulate breathing, has been approved by the U.S. Food and Drug Administration.

Sleep apnea common in atrial fibrillation patients

September 11, 2017
A study involving cardiac patients at the University Hospital of Umeå shows that over 80 percent of patients treated for atrial fibrillation also have sleep apnea - a condition with pauses in breathing during sleep. The ...

What wakes me: Insights on apnea alarm in new research

July 26, 2012
The first time I died in my sleep, I was 26 years old. I was in bed in my St. Louis apartment when my girlfriend shook me awake to say: “You stopped breathing!”

Sleep apnea treatment may reverse unhealthy brain changes

September 15, 2015
(HealthDay)—Sleep apnea treatment may reverse changes in brain stem activity associated with increased risk of heart disease, a new study suggests.

Recommended for you

Sleep deficiency increases risk of a motor vehicle crash

April 4, 2018
Excessive sleepiness can cause cognitive impairments and put individuals at a higher risk of motor vehicle crash. However, the perception of impairment from excessive sleepiness quickly plateaus in individuals who are chronically ...

Sleep apnea study finds male-female differences in cerebral cortex thickness, symptoms

March 13, 2018
Researchers from the UCLA School of Nursing examined clinical records and magnetic resonance imaging brain scans of patients who were recently diagnosed with sleep apnea, and discovered several apparent connections between ...

Synthetic cannabinoid reduces sleep apnea

November 29, 2017
A synthetic version of a molecule found in the cannabis plant was safe and effective in treating obstructive sleep apnea in the first large, multi-site study of a drug for the sleep disorder funded by the National Institutes ...

Sleeping through the snoring: Researchers identify neurons that rouse the brain to breathe

November 2, 2017
A common and potentially serious sleep disorder, obstructive sleep apnea affects at least one quarter of U.S. adults and is linked to increased risk of diabetes, obesity and cardiovascular disease. In a paper published today ...

Inflammation may precede sleep apnea, could be treatment target

September 1, 2017
Inflammation is traditionally thought of as a symptom of sleep apnea, but it might actually precede the disorder, potentially opening the door for new ways to treat and predict sleep apnea, according to researchers.

More evidence: Untreated sleep apnea shown to raise metabolic and cardiovascular stress

August 31, 2017
Sleep apnea, left untreated for even a few days, can increase blood sugar and fat levels, stress hormones and blood pressure, according to a new study of sleeping subjects. A report of the study's findings, published in the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.