How SORLA protects against Alzheimer's disease

November 7, 2017
Huaxi Xu, Ph.D., Professor, Neuroscience and Aging Research Center. Credit: Sanford Burnham Prebys Medical Discovery Institute (SBP)

Researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) have identified a new protective function for a brain protein genetically linked to Alzheimer's. The findings, published in the Journal of Experimental Medicine, could inform novel treatment strategies.

"We found that a protein called SORLA directly limits the ability of amyloid beta, the toxic protein that causes Alzheimer's, to trigger the destruction of neuronal connections," says Huaxi Xu, Ph.D., professor and the Jeanne and Gary Herberger Leadership Chair of SBP's Neuroscience and Aging Research Center. (SORLA stands for sortilin-related receptor with LDLR class A repeats.) "This is actually the third way that SORLA has been shown to defend against neurodegeneration."

"It's becoming increasingly clear that the SORLA gene has a major influence on Alzheimer's development—more and more Alzheimer's-associated mutations in the SORLA gene are being discovered," Xu adds. "Our findings help explain why they are so important."

SORLA is one of many genes in which mutations are associated with increased risk of Alzheimer's, which affects 5.5 million people in the U.S. The biggest risk factor is age—as the average life expectancy increases, the number of people with Alzheimer's is expected to almost triple by 2050.

Alzheimer's begins when amyloid beta aggregates into small clusters outside neurons. Those clusters, called oligomers, induce toxic signaling that damages the connections between synapses so that neurons can no longer talk to one another. Synapse loss is the reason Alzheimer's patients develop memory problems.

Xu and his collaborators suspected that SORLA—a trafficking protein that shuttles molecules between cellular compartments—might help protect against amyloid beta induced toxic signaling based on their prior observations. SORLA has already been shown to counteract production of amyloid beta and eliminate it from the space around neurons.

Xu's team recently reported that SORLA physically interacts with EphA4, one of the receptors through which amyloid beta provokes synaptic dysfunction. (EphA4 exists primarily to control the wiring of neuronal networks as the brain develops and regulate the behavior of synapses in the adult brain.)

In this study, Xu's team established that SORLA could mitigate the toxic EphA4 signaling caused by amyloid beta. They also showed that increasing levels of SORLA in mice reduced cognitive impairments caused by beta.

"These observations suggest that early-stage Alzheimer's could be treated with drugs that increase levels of SORLA, or that enhance its interaction with EphA4," comments Xu. "We're currently searching for drugs that have either of these effects.

"The researchers also found that EphA4 is over-activated in brain tissue from Alzheimer's patients, and that over-activation correlates with decreased binding to SORLA, demonstrating the relevance of this discovery to human disease.

"Our study also provides support to explore EphA4 inhibitors as Alzheimer's therapeutics," Xu notes. "There's preclinical data from disease models suggesting they have some efficacy."

"SORLA is becoming a hot topic in Alzheimer's research. No other protein has yet been found to influence Alzheimer's pathogenesis in so many ways. And it may do even more—we plan to explore whether it modulates other cell surface receptors such as the cellular prion protein and the NMDA receptor."

Explore further: SORLA controls insulin signaling to promote obesity in mice

Related Stories

SORLA controls insulin signaling to promote obesity in mice

June 20, 2016
Large-scale genetic studies have linked variations in genes and proteins to an increased risk for developing obesity. Determining how these variations alter metabolism to increase body mass may lead to the identification ...

Insulin-sensitive fat leads to obesity

June 21, 2016
SORLA is a protein that influences the balance of metabolic processes in adipose tissue, a particular form of fat. Too much of it makes fat cells overly sensitive to insulin, which leads them to break down less fat. SORLA ...

Novel perspectives on anti-amyloid treatment for the prevention of Alzheimer's disease

July 27, 2017
For decades researches have been investigating the underlying foundations of Alzheimer's disease to provide clues for the design of a successful therapy. This week, VIB/KU Leuven scientists have published breakthrough insights ...

'Pac-Man' gene implicated in Alzheimer's disease

July 26, 2016
A gene that protects the brain from the harmful build-up of amyloid-beta, one of the causative proteins implicated in Alzheimer's disease, has been identified as a new target for therapy by NeuRA researchers.

Gene variant protecting against Alzheimer's disease decreases plasma beta-amyloid levels

June 20, 2017
New research from the University of Eastern Finland shows that the APP gene variant protecting against Alzheimer's disease significantly decreases plasma beta-amyloid levels in a population cohort. This is a very significant ...

Hyperactive neurons may be culprit in Alzheimer's

January 13, 2016
A long-term reduction in neuronal activity reduces amyloid plaques associated with Alzheimer's disease, Yale University researchers have found. The study, using mouse models of Alzheimer's, found the opposite is also true—triggering ...

Recommended for you

Alzheimer's Tau protein forms toxic complexes with cell membranes

November 22, 2017
The brains of patients with Alzheimer's disease contain characteristic tangles inside neurons. These tangles are formed when a protein called Tau aggregates into twisted fibrils. As a result, the neurons' transport systems ...

Researchers reveal new details on aged brain, Alzheimer's and dementia

November 21, 2017
In a comprehensive analysis of samples from 107 aged human brains, researchers at the Allen Institute for Brain Science, UW Medicine and Kaiser Permanente Washington Health Research Institute have discovered details that ...

Dementia study sheds light on how damage spreads through brain

November 20, 2017
Insights into how a key chemical disrupts brain cells in a common type of dementia have been revealed by scientists.

Researchers describe new biology of Alzheimer's disease

November 20, 2017
In a new study, researchers from Boston University School of Medicine (BUSM) describe a unique model for the biology of Alzheimer's disease (AD) which may lead to an entirely novel approach for treating the disease. The findings ...

Study shows video games could cut dementia risk in seniors

November 16, 2017
Could playing video games help keep the brain agile as we age?

New player in Alzheimer's disease pathogenesis identified

November 14, 2017
Scientists at Sanford Burnham Prebys Medical Discovery Institute (SBP) have shown that a protein called membralin is critical for keeping Alzheimer's disease pathology in check. The study, published in Nature Communications, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.