Engineering tomorrow's responsive, adaptable neuroprosthetics and robots

November 14, 2017, Society for Neuroscience

Advanced prosthetic limbs and eyes as well as brain-machine interfaces are harnessing existing neural circuitry to improve the quality of life for people with sensory impairment, according to studies presented today at Neuroscience 2017, the annual meeting of the Society for Neuroscience and the world's largest source of emerging news about brain science and health.

Millions of people around the world are unable to fully use their bodies or senses due to disease, injury, or amputation. At best, modern therapies and prostheses only partially restore function. Over the past 20 years, advances in biomedical engineering have led to the development of interfaces between , the nervous system, and human tissue that are enhancing the effectiveness of biomedical devices.

Today's new findings show that:

  • Neural signals from an extracted rodent spinal cord can control cultured muscle fibers in a petri dish, providing a new technique for studying how the nervous system directs movement (Collin Kaufman, abstract 781.11, see attached summary).
  • A tetraplegic patient can learn to adapt neural activity to maintain control of a brain-machine interface in the face of technical challenges (Sofia Sakellaridi, abstract 777.06, see attached summary).
  • Restoring sense of touch through an amputee's prosthetic hand improves motor skills, reduces phantom pain, and provides a sense of hand ownership (Jacob Anthony George, abstract 642.04, see attached summary).

Other recent findings discussed show that:

  • A fully organic retinal prosthesis, made of layers of photosensitive polymers and silk, led to vision-related brain activity and behavior in blind rats (Jose Fernando Maya-Vetencourt, abstract 683.02, see attached summary).

"Unlike many pharmacological or biologic therapies to help people with neurological injuries or disease, engineering solutions have the potential for immediate and sometimes dramatic restoration of function," said press conference moderator Leigh Hochberg of Massachusetts General Hospital, Brown University, and the Providence VA Medical Center, and an expert in neurotechnologies. "It is really exciting to see how the growth of fundamental neuroscience and neuroengineering research over many years is leading to the creation of technologies that will help to reduce the burden of neurological and psychiatric disease."

Explore further: Exploring the neural mechanisms behind social decision-making, cooperation, and aggression

Related Stories

Exploring the neural mechanisms behind social decision-making, cooperation, and aggression

November 13, 2017
Humans, primates, and many other animals are innately social, spending much of their lifetimes in the presence of other individuals, but little is known about the neural mechanisms that generate social behaviors. Recent advances ...

Military service members face unique and sustained threats to optimal brain health

November 12, 2017
Military service exposes soldiers to a unique set of physical challenges, including toxic chemicals and traumatic brain injury, which can have profound effects on their health and well-being. New research examines the effects ...

Studying sleep's profound and extensive effects on brain function

November 12, 2017
Although the general benefits of a good night's sleep are well established, one-third of American adults do not get a sufficient amount of sleep. Recent research sheds new light on the extensive effects of sleep on the brain, ...

Research advances understanding of opioid addiction in face of public health crisis

November 13, 2017
As the United States grapples with the devastating effects of an opioid epidemic, researchers are making progress in advancing our understanding of opioid addiction-related health issues, according to studies presented today ...

How bacteria in the gut influence neurodegenerative disorders

November 13, 2017
Humans have roughly as many bacterial cells in their bodies as human cells, and most of those bacteria live in the gut. New research released today reveals links between the gut microbiome—the population of microorganisms ...

Harmful effects of stress on the brain and promising approaches for relief

November 13, 2017
Stress can have numerous harmful effects on the mind and body, both immediately and over long periods of time. New research reveals mechanisms by which stress exacts its toll throughout the body, from the brain to the male ...

Recommended for you

Study of protein 'trafficker' provides insight into autism and other brain disorders

September 22, 2018
In the brain, as in business, connections are everything. To maintain cellular associates, the outer surface of a neuron, its membrane, must express particular proteins—proverbial hands that reach out and greet nearby cells. ...

Breast milk may be best for premature babies' brain development

September 21, 2018
Babies born before their due date show better brain development when fed breast milk rather than formula, a study has found.

Early warning sign of psychosis detected

September 21, 2018
Brains of people at risk of psychosis exhibit a pattern that can help predict whether they will go on to develop full-fledged schizophrenia, a new Yale-led study shows. The findings could help doctors begin early intervention ...

White matter repair and traumatic brain injury

September 20, 2018
Traumatic brain injury (TBI) is a leading cause of death and disability in the U.S., contributing to about 30 percent of all injury deaths, according to the CDC. TBI causes damage to both white and gray matter in the brain, ...

Gut branches of vagus nerve essential components of brain's reward and motivation system

September 20, 2018
A novel gut-to-brain neural circuit establishes the vagus nerve as an essential component of the brain system that regulates reward and motivation, according to research conducted at the Icahn School of Medicine at Mount ...

Genomic dark matter activity connects Parkinson's and psychiatric diseases

September 20, 2018
Dopamine neurons are located in the midbrain, but their tendril-like axons can branch far into the higher cortical areas, influencing how we move and how we feel. New genetic evidence has revealed that these specialized cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.