Gene mutation causes low sensitivity to pain

December 13, 2017, University College London
Credit: CC0 Public Domain

A UCL-led research team has identified a rare mutation that causes one family to have unusually low sensitivity to pain.

The researchers hope the findings, published today in Brain, could be used to identify new treatments for .

They studied an Italian family, the Marsilis, which includes six people who have a distinctive response that has not been identified in any other people.

"The members of this family can burn themselves or experience pain-free bone fractures without feeling any pain. But they have a normal intraepidermal nerve fibre density, which means their nerves are all there, they're just not working how they should be. We're working to gain a better understanding of exactly why they don't feel much pain, to see if that could help us find new pain relief treatments," said the study's lead author, Dr James Cox (UCL Wolfson Institute for Biomedical Research).

One in ten people experience moderately to severely disabling chronic pain,* but treatments beyond common painkillers remain elusive. Understanding the causes of congenital analgesia, a rare inherited condition that reduces the capacity to feel , is one of the main areas of research that could lead to new pain relief therapies.

Two other causing congenital analgesia are being actively explored by researchers alongside pharmaceutical firms, but have yet to yield any breakthrough drugs.

The research team added to previous work with the Italian family to clarify the nature of their phenotype (the observable characteristics caused by their genetics) - named the Marsili syndrome after their surname - finding that they're hyposensitive to noxious heat, hyposensitive to capsaicin (in chilli peppers) and have experienced pain-free bone fractures.

Using DNA from blood samples, the researchers conducted a whole exome sequencing - mapping out the protein-coding genes in the genome of each family member. They identified a novel point mutation in the ZFHX2 gene. The mutation alters a part of the gene's protein sequence that is normally consistent across species as variable as mice and frogs.

The researchers then conducted two animal studies to understand how the gene affects pain sensations in mice. They initially used mice that had been bred with the ZFHX2 gene entirely absent, and found them to have altered pain thresholds. They then bred a new line of mice that had the relevant mutation, and those mice were notably insensitive to high temperatures.

Further analysis of the mice bearing the mutation clarified that the gene regulates a number of other genes that have previously-established connections to pain signalling.

"By identifying this mutation and clarifying that it contributes to the family's pain insensitivity, we have opened up a whole new route to drug discovery for pain relief. With more research to understand exactly how the mutation impacts , and to see what other might be involved, we could identify novel targets for drug development," said co-author Professor Anna Maria Aloisi (University of Siena), who was part of the team that initially identified the Marsili family's distinctive condition.

"One possible treatment may be a gene therapy strategy, if we could find a way to mimic the Marsili phenotype by overexpressing the mutated transcription factor," added co-author Professor John Wood (UCL Wolfson Institute for Biomedical Research).

"We hope that our findings and the subsequent research projects will help find better treatments for the millions of people worldwide who experience chronic pain and don't get relief from existing drugs," said the study's first author, Dr Abdella Habib (Qatar University, College of Medicine), who conducted the study while based at UCL.

Explore further: New research reveals most pain-sensing nerves in the body specialized to respond to specific sensations

More information: *Estimate for the UK. Source: Fayaz et al (2016) bmjopen.bmj.com/content/6/6/e010364

"A novel human pain insensitivity disorder caused by a point mutation in ZFHX2", Brain (2017). academic.oup.com/brain/article … 10.1093/brain/awx236

Related Stories

New research reveals most pain-sensing nerves in the body specialized to respond to specific sensations

November 11, 2016
Many pain-sensing nerves in the body are thought to respond to all types of 'painful events', but new UCL research in mice reveals that in fact most are specialised to respond to specific types such as heat, cold or mechanical ...

Researchers uncover the source of diabetic nerve pain

September 27, 2017
A new King's College London study reveals the molecular basis of chronic nerve pain in diabetes. The findings in mice, published today in Science Translational Medicine, could one day lead to treatments which target the source ...

Researchers find new genes link to arthritis in bone marrow lesions

July 18, 2017
Researchers have found a pattern of genes which is characteristic of osteoarthritis and may be a step towards better treatments for this condition.

Scientists discover new category of analgesic drugs that may treat neuropathic pain

March 29, 2017
New research published online in The FASEB Journal suggests that a novel therapeutic target called LPCAT2 may prove effective against pain that is not receptive to the current treatments. This study has also revealed the ...

Research team identifies gene mutation that causes loss of pain perception

September 16, 2013
(Medical Xpress)—A large team of European researchers has identified a gene mutation that is responsible for causing a condition that leads to an inability to experience pain in humans. In their paper published in Nature ...

New insight into pain mechanisms

April 25, 2012
(Medical Xpress) -- Researchers in the UCL Wolfson Institute for Biomedical Research have made a discovery which could help the development of analgesic drugs able to treat nerve damage-related pain.

Recommended for you

Research shows signalling mechanism in the brain shapes social aggression

October 19, 2018
Duke-NUS researchers have discovered that a growth factor protein, called brain-derived neurotrophic factor (BDNF), and its receptor, tropomyosin receptor kinase B (TrkB) affects social dominance in mice. The research has ...

Good spatial memory? You're likely to be good at identifying smells too

October 19, 2018
People who have better spatial memory are also better at identifying odors, according to a study published this week in Nature Communications. The study builds on a recent theory that the main reason that a sense of smell ...

How clutch molecules enable neuron migration

October 19, 2018
The brain can discriminate over 1 trillion odors. Once entering the nose, odor-related molecules activate olfactory neurons. Neuron signals first accumulate at the olfactory bulb before being passed on to activate the appropriate ...

Scientists discover the region of the brain that registers excitement over a preferred food option

October 19, 2018
At holiday buffets and potlucks, people make quick calculations about which dishes to try and how much to take of each. Johns Hopkins University neuroscientists have found a brain region that appears to be strongly connected ...

Gene plays critical role in noise-induced deafness

October 19, 2018
In experiments using mice, a team of UC San Francisco researchers has discovered a gene that plays an essential role in noise-induced deafness. Remarkably, by administering an experimental chemical—identified in a separate ...

Weight loss success linked with active self-control regions of the brain

October 18, 2018
New research suggests that higher-level brain functions have a major role in losing weight. In a study among 24 participants at a weight-loss clinic, those who achieved greatest success in terms of weight loss demonstrated ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.