Healthy mitochondria could stop Alzheimer's

December 6, 2017, Ecole Polytechnique Federale de Lausanne
Whole-brain hemisphere sections of Alzheimer's mice, the model APP/PSEN1, before and after treatment with the NAD+ booster Nicotinamide riboside (NR). The beta-amyloid plaque content in the brain of the APP/PSEN1 mice (left), clearly visible by Thioflavin S staining in green color and associated to brain damage during the disease, is reduced after 10 weeks treatment with NR (right). Credit: Vincenzo Sorrentino, Mario Romani, Francesca Potenza/EPFL.

Alzheimer's disease is the most common form of dementia and neurodegeneration worldwide. A major hallmark of the disease is the accumulation of toxic plaques in the brain, formed by the abnormal aggregation of a protein called beta-amyloid inside neurons.

Still without cure, Alzheimer's poses a significant burden on public health systems. Most treatments focus on reducing the formation of amyloid plaques, but these approaches have been inconclusive. As a result, scientists are now searching for alternative treatment strategies, one of which is to consider Alzheimer's as a metabolic disease.

Taking this line of thought, Johan Auwerx's lab at EPFL looked at , which are the energy-producing powerhouses of cells, and thus central in metabolism. Using worms and mice as models, they discovered that boosting mitochondria defenses against a particular form of protein stress, enables them to not only protect themselves, but to also reduce the formation of amyloid plaques.

During normal aging and age-associated diseases such as Alzheimer's, cells face increasing damage and struggle to protect and replace dysfunctional mitochondria. Since mitochondria provide energy to brain cells, leaving them unprotected in Alzheimer's disease favors brain damage, giving rise to symptoms like memory loss over the years.

The scientists identified two mechanisms that control the quality of mitochondria: First, the "mitochondrial unfolded protein response" (UPRmt), which protects mitochondria from stress stimuli. Second, mitophagy, a process that recycles . Both these mechanisms are the key to delaying or preventing excessive mitochondrial damage during disease.

While we have known for a while that mitochondria are dysfunctional in the brains of Alzheimer's patients, this is the first evidence that they actually try to fight the disease by boosting quality control pathways. "These defense and recycle pathways of the mitochondria are essential in organisms, from the worm C. elegans all the way to humans," says Vincenzo Sorrentino, first author of the paper. "So we decided to pharmacologically activate them."

The team started by testing well-established compounds, such as the antibiotic doxycycline and the vitamin nicotinamide riboside (NR), which can turn on the UPRmt and mitophagy defense systems in a worm model (C. elegans) of Alzheimer's disease. The health, performance and lifespan of worms exposed to the drugs increased remarkably compared with untreated worms. Plaque formation was also significantly reduced in the treated animals.

And most significantly, the scientists observed similar improvements when they turned on the same mitochondrial defense pathways in cultured human neuronal cells, using the same drugs.

The encouraging results led the researchers to test NR in a mouse model of Alzheimer's disease. Just like C. elegans, the mice saw a significant improvement of mitochondrial function and a reduction in the number of amyloid plaques. But most importantly, the scientists observed a striking normalization of the cognitive function in the mice. This has tremendous implications from a clinical perspective.

According to Johan Auwerx, tackling Alzheimer's through mitochondria could make all the difference. "So far, Alzheimer's disease has been considered to be mostly the consequence of the accumulation of in the brain," he says. "We have shown that restoring mitochondrial health reduces - but, above all, it also improves brain function, which is the ultimate objective of all Alzheimer's researchers and patients."

The strategy provides a novel therapeutic approach to slow down the progression of neurodegeneration in Alzheimer's disease, and possibly even in other disorders such as Parkinson's disease, which is also characterized by profound mitochondrial and metabolic defects.

The approach remains to be tested in human patients. "By targeting mitochondria, NR and other molecules that stimulate their 'defense and recycle' systems could perhaps succeed where so many drugs, most of which aim to decrease , have failed," says Vincenzo Sorrentino.

Explore further: Vitamin C deficiency and mitochondrial dysfunction in Alzheimer's disease

More information: Vincenzo Sorrentino et al, Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity, Nature (2017). DOI: 10.1038/nature25143

Related Stories

Vitamin C deficiency and mitochondrial dysfunction in Alzheimer's disease

December 4, 2017
Early clinical features of sporadic Alzheimer's disease include alterations in mitochondrial function that appear prior to classical features. Mitochondrial dysfunction increases the production of reactive oxygen species ...

Gene defect may point to solution for Alzheimer's

April 13, 2016
Alzheimer's disease is caused by protein (amyloid) deposition in the brain. New research at the University of Bergen (UiB) and Haukeland University Hospital shows that the protein PITRM1, which is found in mitochondria, otherwise ...

Overactive scavenger cells may cause neurodegeneration in Alzheimer's

June 30, 2017
For the first time, researchers from the University of Zurich demonstrate a surprising effect of microglia, the scavenger cells of the brain: If these cells lack the TDP-43 protein, they not only remove Alzheimer's plaques, ...

Key cellular auto-cleaning mechanism mediates the formation of plaques in Alzheimer's brain

October 3, 2013
Autophagy, a key cellular auto-cleaning mechanism, mediates the formation of amyloid beta plaques, one of the hallmarks of Alzheimer's disease. It might be a potential drug target for the treatment of the disease, concludes ...

Recommended for you

A new way of thinking about tau kinetics, an essential component of Alzheimer's disease

March 21, 2018
Alzheimer's disease is most often characterized by two different pathologies in the brain: plaque deposits of a protein called beta-amyloid and tangles of another protein called tau. A paper appearing March 21 in the journal ...

Could drugs used after an organ transplant protect against Alzheimer's?

March 21, 2018
A UT Southwestern study in mice provides new clues about how a class of anti-rejection drugs used after organ transplants may also slow the progression of early-stage Alzheimer's disease.

Cell therapy could improve brain function for Alzheimer's disease

March 15, 2018
Like a great orchestra, your brain relies on the perfect coordination of many elements to function properly. And if one of those elements is out of sync, it affects the entire ensemble. In Alzheimer's disease, for instance, ...

Physically fit women nearly 90 percent less likely to develop dementia

March 14, 2018
Women with high physical fitness at middle age were nearly 90 percent less likely to develop dementia decades later, compared to women who were moderately fit, according to a study published the March 14, 2018, online issue ...

Poor sleep may heighten Alzheimer's risk

March 12, 2018
(HealthDay)—Older adults who are sleepy during the day might have harmful plaque building in their brain that is a sign of impending Alzheimer's disease, researchers report.

Dementia patients with distorted memories may actually retain key information – researchers say

March 7, 2018
Some memories containing inaccurate information can be beneficial to dementia sufferers because it enables them to retain key information researchers say.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Dec 06, 2017
Better News Today: (For 1st time, 1 DNA Sequenced) Lakhs of Mitochondria WITHIN ANY CELL contain DIFFERENT DNA (Actually More than 10 DNA types in Each Mitochondrion of a cell itself) ! Knowing How & Why will help HUMANITY in future. So, WHY NOT Transfer Mitochondrial Contents of 1 Body Cell Type into Another; From 1 Mouse into a Rat AND See The Effects. https://www.eurek...0517.php

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.