Overactive scavenger cells may cause neurodegeneration in Alzheimer's

June 30, 2017, University of Zurich
PET scan of a human brain with Alzheimer's disease. Credit: public domain

For the first time, researchers from the University of Zurich demonstrate a surprising effect of microglia, the scavenger cells of the brain: If these cells lack the TDP-43 protein, they not only remove Alzheimer's plaques, but also synapses. This removal of synapses by these cells presumably leads to neurodegeneration observed in Alzheimer's and other neurodegenerative diseases.

Similar to other neurodegenerative disorders, Alzheimer's is a in which the cognitive abilities of afflicted persons continuously worsen. The reason is the increasing loss of , the contact points of the neurons, in the brain. In the case of Alzheimer's, certain protein fragments, the β-amyloid peptides, are suspected of causing the death of neurons. These protein fragments clump together and form the disease's characteristic plaques.

Voracious microglia cells destroy brain synapses

Together with researchers from Great Britain and the United States, the group of Lawrence Rajendran from the Institute for Regenerative Medicine of the University of Zurich now shows that dysfunctional cells contribute to the loss of synapses in Alzheimer's and other neurodegenerative diseases. These usually monitor the function of neurons in the brain by removing excess synapses during development or toxic protein aggregates. Until now, their role in neurodegenerative disorders remains controversial.

In an initial step, the researchers looked at the effect that certain risk genes for Alzheimer's have on the production of the β-amyloid peptide. They found no effect in neurons. This led the researchers then to examine the function of these risk genes in microglia cells - and made a discovery: If they turned off the gene for the TDP-43 protein in these scavenger cells, these cells remove β-amyloid very efficiently. This is due to the fact that the lack of TDP-43 in microglia led to an increased scavenging activity, called phagocytosis.

The TDP-43 protein regulates the activity of scavenger cells

In the next step, researchers used mice, which acted as a disease model for Alzheimer's. In this case, as well, they switched off TDP-43 in microglia and observed once more that the cells efficiently eliminated the β-amyloid. Surprisingly, the increased scavenging activity of microglia in mice led also to a significant loss of synapses at the same time. This synapse loss occurred even in mice that do not produce human amyloid. This finding that increased phagocytosis of microglia can induce synapse loss led researchers to hypothesize that perhaps, during aging, dysfunctional microglia could display aberrant phagocytic activity. "Nutrient deprivation or starvation-like mechanism during aging could enhance phagocytic mechanism in microglia and this could lead to synaptic loss" Lawrence Rajendran assumes.

Direct role in neurodegeneration

The results show that the role of microglia cells in like Alzheimer's has been underestimated. It is not limited to influencing the course of the disease through inflammatory reactions and the release of neurotoxic molecules as previously assumed. Instead, this study shows that they can actively induce neurodegeneration. "Dysfunction of the microglia may be an important reason why many Alzheimer's medications reduce the amyloid plaques in clinical testing, but the cognitive functions in patients do not lead to improvement," Rajendran says.

Explore further: Rejuvenating the brain's disposal system

More information: Rosa C. Paolicelli et al, TDP-43 Depletion in Microglia Promotes Amyloid Clearance but Also Induces Synapse Loss, Neuron (2017). DOI: 10.1016/j.neuron.2017.05.037

Related Stories

Rejuvenating the brain's disposal system

December 21, 2016
A characteristic feature of Alzheimer's disease is the presence of so called amyloid plaques in the patient's brain - aggregates of misfolded proteins that clump together and damage nerve cells. Although the body has mechanisms ...

Phagocytes in the brain—good or bad?

May 31, 2017
The role of microglial cells in neurodegenerative disease is not fully understood. But new results from researchers in Munich and Basel suggest that stimulation of this arm of the immune system might well delay the onset ...

Immune cells may protect against Alzheimer's

May 19, 2016
Clusters of immune cells in the brain previously associated with Alzheimer's actually protect against the disease by containing the spread of damaging amyloid plaques, a new Yale University School of Medicine study shows.

Experimental drug shows promise in treating Alzheimer's disease

October 25, 2016
An experimental drug shows promise in treating Alzheimer's disease by preventing inflammation and removing abnormal protein clumps in the brain that are associated with the disease, suggests a study in mice presented at the ...

Blocking inflammation prevents cell death, improves memory in Alzheimer's disease

February 29, 2016
Using a drug compound created to treat cancer, University of California, Irvine neurobiologists have disarmed the brain's response to the distinctive beta-amyloid plaques that are the hallmark of Alzheimer's disease.

Body's immune system may play larger role in Alzheimer's disease than thought

February 23, 2016
Immune cells that normally help us fight off bacterial and viral infections may play a far greater role in Alzheimer's disease than originally thought, according to University of California, Irvine neurobiologists with the ...

Recommended for you

Scientists discover why some people with brain markers of Alzheimer's have no dementia

August 16, 2018
A new study from The University of Texas Medical Branch at Galveston has uncovered why some people that have brain markers of Alzheimer's never develop the classic dementia that others do. The study is now available in the ...

Researchers identify new genes that may contribute to Alzheimer's disease

August 14, 2018
Researchers from Boston University School of Medicine, working with scientists across the nation on the Alzheimer's Disease Sequencing Project (ADSP), have discovered new genes that will further current understanding of the ...

Deaths from resident-to-resident incidents in dementia offers insights to inform policy

August 14, 2018
Analyzing the incidents between residents in dementia in long-term care homes may hold the key to reducing future fatalities among this vulnerable population, according to new research from the University of Minnesota School ...

Scientists propose a new lead for Alzheimer's research

August 14, 2018
A University of Adelaide-led team of scientists has suggested a potential link between iron in our cells and the rare gene mutations that cause Alzheimer's disease, which could provide new avenues for future research.

Eye conditions provide new lens screening for Alzheimer's disease

August 8, 2018
Alzheimer's disease is difficult to diagnose as well as treat, but researchers now have a promising new screening tool using the window to the brain: the eye.

Potential indicator for the early detection of dementias

August 7, 2018
Researchers at the University of Basel have discovered a factor that could support the early detection of neurodegenerative diseases such as Alzheimer's or Parkinson's. This cytokine is induced by cellular stress reactions ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.