Experimental drug shows promise in treating Alzheimer's disease

October 25, 2016

An experimental drug shows promise in treating Alzheimer's disease by preventing inflammation and removing abnormal protein clumps in the brain that are associated with the disease, suggests a study in mice presented at the Anesthesiology 2016 annual meeting.

A key characteristic of Alzheimer's disease is the development of clumps called amyloid plaques and tangled bundles of fibers in the . These changes cause in the brain and damage to the neurons. This progressive damage leads to memory loss, confusion and dementia. The new drug, known as NTRX-07, appears to decrease this inflammation in the brain, while preserving neurons and regenerative cells in the brain.

"This drug may reduce inflammation in the brain, which is linked to Alzheimer's disease," said lead researcher Mohamed Naguib, M.D., a physician anesthesiologist in the Department of General Anesthesiology at the Cleveland Clinic and professor of anesthesiology at the Cleveland Clinic Lerner College of Medicine. "NTRX-07 uses a different mechanism than many other Alzheimer's drugs currently available, as it targets the cause of the disease, not just the symptoms."

The authors discovered NTRX -07's memory-restoring abilities while studying the drug's potential to treat a complex, chronic pain condition called . "Patients who have neuropathic pain have chronic neuroinflammation," said Dr. Naguib. "This is a compound that blunts that inflammation."

Researchers tested NTRX -07 on mice bred to have similar brain neurodegenerative issues as seen in Alzheimer's. They found that inflammation produced in response to the disease caused changes in the brain's microglia cells - that typically remove dangerous amyloid plaques (protein clumps) in the brain. As the amyloid plaques accumulated in the mice, the microglia (immune cells) were unable to remove them, leading to inflammation and damage to nerve cells, which caused decreased cognitive ability.

Microglia cells have receptors on the surface called CB2 receptors, which when activated can produce an anti-inflammatory response. NTRX -07 targets CB2 receptors, which leads to decreased inflammation and prevents damage to the brain tissue. The new drug improved removal of abnormal amyloid plaques and improved memory performance and other cognitive skills.

The drug also increased levels of a protein called SOX2, which has been shown to help new brain cells develop and protect the brain in people with Alzheimer's disease. The study found in mice treated with NTRX-07, the levels of SOX2 were restored to normal levels. In contrast, mice treated with a placebo showed decreased levels of SOX2, active inflammation in the brain, poor removal of , and poor memory performance.

Explore further: Immune cells may protect against Alzheimer's

Related Stories

Immune cells may protect against Alzheimer's

May 19, 2016
Clusters of immune cells in the brain previously associated with Alzheimer's actually protect against the disease by containing the spread of damaging amyloid plaques, a new Yale University School of Medicine study shows.

Blocking inflammation prevents cell death, improves memory in Alzheimer's disease

February 29, 2016
Using a drug compound created to treat cancer, University of California, Irvine neurobiologists have disarmed the brain's response to the distinctive beta-amyloid plaques that are the hallmark of Alzheimer's disease.

Treatment approach used in cancer holds promise for Alzheimer's disease

October 21, 2016
Researchers have developed a novel treatment that could block the development of Alzheimer's disease using microscopic droplets of fat to carry drugs into the brain. This treatment approach, which is used to target drugs ...

Cannabinoids remove plaque-forming Alzheimer's proteins from brain cells

June 29, 2016
Salk Institute scientists have found preliminary evidence that tetrahydrocannabinol (THC) and other compounds found in marijuana can promote the cellular removal of amyloid beta, a toxic protein associated with Alzheimer's ...

Immune cells are an ally, not enemy, in battle against Alzheimer's

January 29, 2015
Beta-amyloid is a sticky protein that aggregates and forms small plaques in the brains of the elderly and is thought to be a cause of Alzheimer's disease. Because specialized immune cells always surround these plaques, many ...

One step closer to defeating Alzheimer's disease

March 2, 2015
Tackling brain inflammation ameliorates Alzheimer's disease (AD), according to a study published in The Journal of Experimental Medicine.

Recommended for you

Multi-gene test predicts Alzheimer's better than APOE E4 alone

September 22, 2017
A new test that combines the effects of more than two dozen genetic variants, most associated by themselves with only a small risk of Alzheimer's disease, does a better job of predicting which cognitively normal older adults ...

Personality changes don't precede clinical onset of Alzheimer's, study shows

September 21, 2017
For years, scientists and physicians have been debating whether personality and behavior changes might appear prior to the onset of Alzheimer's disease and related dementias.

Newly ID'd role of major Alzheimer's gene suggests possible therapeutic target

September 20, 2017
Nearly a quarter century ago, a genetic variant known as ApoE4 was identified as a major risk factor for Alzheimer's disease—one that increases a person's chances of developing the neurodegenerative disease by up to 12 ...

Is the Alzheimer's gene the ring leader or the sidekick?

September 15, 2017
The notorious genetic marker of Alzheimer's disease and other forms of dementia, ApoE4, may not be a lone wolf.

Potential noninvasive test for Alzheimer's disease

September 6, 2017
In the largest and most conclusive study of its kind, researchers have analysed blood samples to create a novel and non-invasive way of helping to diagnose Alzheimer's disease and distinguishing between different types of ...

Researchers unlock the molecular origins of Alzheimer's disease

September 6, 2017
A "twist of fate" that is minuscule even on the molecular level may cause the development of Alzheimer's disease, VCU researchers have found.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

lpurl
not rated yet Oct 25, 2016
What pharmaceutical company developed this drug?
RobertKarlStonjek
not rated yet Oct 25, 2016
If this initiative succeeds we may see the closure of rodent dementia clinics around the world!!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.