Inflammation drives progression of Alzheimer's

December 21, 2017, German Center for Neurodegenerative Diseases
PET scan of a human brain with Alzheimer's disease. Credit: public domain

According to a study published in the journal Nature by scientists of the German Center for Neurodegenerative Diseases (DZNE) and the University of Bonn, inflammatory mechanisms caused by the brain's immune system drive the progression of Alzheimer's disease. These findings, which rely on a series of laboratory experiments, provide new insights into pathogenetic mechanisms that are believed to hold potential for tackling Alzheimer's before symptoms manifest. The researchers envision that one day, this may lead to new treatments.

Alzheimer's is a devastating neurodegenerative condition ultimately leading to dementia. An effective treatment does not yet exist. The disease is associated with the aberrant aggregation of small amyloid-beta (Abeta) proteins that accumulate in the brain and appear to harm neurons. In recent years, studies have revealed that deposits of Abeta, known as plaques, trigger inflammatory mechanisms of the brain's innate immune system. However, the precise processes that lead to neurodegeneration and progression of pathology have thus far not been fully understood.

"Deposition and spreading of Abeta pathology likely precede the appearance of clinical symptoms such as memory problems by decades. Therefore, a better understanding of these processes might be a key for novel therapeutic approaches. Such treatments would target Alzheimer's at an early stage, before cognitive deficits manifest," says Prof. Michael Heneka, a senior researcher at the DZNE and Director of the Department of Neurodegenerative Diseases and Gerontopsychiatry at the University of Bonn.

An Inflammatory Cascade

Prof. Heneka and coworkers have been investigating the role of the brain's immune response in the progression of Abeta pathology for some time. Previous work by the group published in Nature in 2013 established that the molecular complex NLRP3, which is an innate immune sensor, is activated in brains of Alzheimer's patients and contributes to the pathogenesis of Alzheimer's in the murine model.

NLRP3 is a so-called inflammasome that triggers production of highly pro-inflammatory cytokines. Furthermore, upon activation, NLRP3 forms large signaling complexes with the adapter protein ASC that can be released from cells. "The release of ASC specks from activated cells has so far only been documented in macrophages, and their relevance in disease processes has so far remained a mystery," says Prof. Eicke Latz of the University of Bonn.

In the current study, it was demonstrated that ASC specks are also released from activated immune cells in the brain, the microglia. Moreover, the findings provide a direct molecular link to classical hallmarks of neurodegeneration. "We found that ASC specks bind to Abeta in the extracellular space and promote aggregation of Abeta, thus directly linking innate immune activation with the progression of pathology," Heneka says.

Novel Approach for Therapy?

This view is supported by a series of experiments in mouse models of Alzheimer's disease. In these, the researchers investigated the effects of ASC specks and its component, the ACS protein, on the spreading of Abeta deposits in the brain.

"Additionally, analysis of human brain material indicates at several levels that inflammation and Abeta pathology may interact in a similar fashion in humans. Together, our findings suggest that brain inflammation is not just a bystander phenomenon, but a strong contributor to disease progression," Heneka says. "Therefore, targeting this immune response will be a novel treatment modality for Alzheimer's."

Explore further: Diagnosing Alzheimer's earlier rather than later

More information: Carmen Venegas et al, Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer's disease, Nature (2017). DOI: 10.1038/nature25158

Related Stories

Diagnosing Alzheimer's earlier rather than later

May 9, 2016
A hallmark of Alzheimer's disease is the appearance of plaques in the brain. The plaques are gradually made up by the aggregation of a small protein called amyloid-beta or "Abeta". Alzheimer's is usually diagnosed late, when ...

Alzheimer's culprit causes memory loss even before brain degeneration

May 29, 2015
The study, published May 29 in the open access Nature Publishing Group journal Scientific Reports, reveals a direct link between the main culprit of Alzheimer's disease and memory loss.

Designer protein gives new hope to scientists studying Alzheimer's disease

July 22, 2016
A new protein which will help scientists to understand why nerve cells die in people with Alzheimer's disease has been designed in a University of Sussex laboratory.

An implant to prevent Alzheimer's

March 17, 2016
In a cutting-edge treatment for Alzheimer's disease, EPFL scientists have developed an implantable capsule that can turn the patient's immune system against the disease.

Targeting inflammatory pathway reduces Alzheimer's disease in mice

December 15, 2014
Alzheimer's disease (AD) is the most common form of dementia and is characterized by the formation of β-amyloid plaques throughout the brain. Proteins known as chemokines regulate inflammation and the immune response. In ...

Recommended for you

Rocky start for Alzheimer's drug research in 2018

January 19, 2018
The year 2018, barely underway, has already dealt a series of disheartening blows to the quest for an Alzheimer's cure.

Alzheimer's disease: Neuronal loss very limited

January 17, 2018
Frequently encountered in the elderly, Alzheimer's is considered a neurodegenerative disease, which means that it is accompanied by a significant, progressive loss of neurons and their nerve endings, or synapses. A joint ...

Anxiety: An early indicator of Alzheimer's disease?

January 12, 2018
A new study suggests an association between elevated amyloid beta levels and the worsening of anxiety symptoms. The findings support the hypothesis that neuropsychiatric symptoms could represent the early manifestation of ...

One of the most promising drugs for Alzheimer's disease fails in clinical trials

January 11, 2018
To the roughly 400 clinical trials that have tested some experimental treatment for Alzheimer's disease and come up short, we can now add three more.

Different disease types associated with distinct amyloid-beta prion strains found in Alzheimer's patients

January 9, 2018
An international team of researchers has found different disease type associations with distinct amyloid-beta prion strains in the brains of dead Alzheimer's patients. In their paper published in Proceedings of the National ...

Advances in brain imaging settle debate over spread of key protein in Alzheimer's

January 5, 2018
Recent advances in brain imaging have enabled scientists to show for the first time that a key protein which causes nerve cell death spreads throughout the brain in Alzheimer's disease - and hence that blocking its spread ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.