PET tracer gauges effectiveness of promising Alzheimer's treatment

December 6, 2017, Society of Nuclear Medicine and Molecular Imaging
PET imaging shows the average 18F-AV45 uptake per animal group at 8 and 13 months of age. A significant interaction of genotype treatment was observed in the cortex (p = 0.0248), hippocampus (p = 0.0071) and thalamus (p = 0.0084), indicating reduced [18F]-AV45 uptake in BACE1 inhibited transgenic mice. Credit: MICA, University of Antwerp, Belgium

In the December featured basic science article in The Journal of Nuclear Medicine, Belgian researchers report on the first large-scale longitudinal imaging study to evaluate BACE1 inhibition with micro-PET in mouse models of Alzheimer's disease. PET imaging has been established as an excellent identifier of the amyloid plaque and tau tangles that characterize Alzheimer's disease. Now it is proving to be an effective way to gauge treatment effectiveness.

The tracer makes it possible to image the effects of chronic administration of an inhibitor for an enzyme, called beta (β)-site amyloid precursor protein-cleaving enzyme 1 (BACE1), which cuts off protein fragments that can lead to amyloid-β development and is more prevalent in brains affected by Alzheimer's. It does this by binding to BACE1.

The study compared with those genetically-altered to have Alzheimer's, and tested 18F-florbetapir (18F-AV45) along with two other tracers, 18F-FDG PET and 18F-PBR111. The mice received the BACE inhibitor at 7 weeks, then brain metabolism, neuroinflammation and amyloid-β pathology were measured using a micro-PET (μPET) scanner and each of the tracers. Baseline scans were done at 6-7 weeks and follow-up scans at 4,7 and 12 months. 18F-AV45 uptake was measured at 8 and 13 months of age. After the final scans, microscopic studies were performed.

While all three tracers detected pathological differences between the genetically modified mice and the controls, only 18F-AV45 showed the effects of inhibitor treatment by identifying reduced amyloid-β pathology in the genetically modified mice. This was confirmed in the microscopic studies.

The team of the Molecular Imaging Center Antwerp, Belgium, however warns, "This study clearly showed that accurate quantification of amyloid-beta tracers is critically important and that the non-specific uptake in the brain of subjects might be underestimated for some existing Alzheimer's tracers that have fast metabolization profiles. The aim of this translational research is advancing results discovered at the bench so that they can be applied to patients at the bedside."

The statistics on Alzheimer's are sobering. Approximately 10 percent of people 65 and older have Alzheimer's dementia, according to the Alzheimer's Association. More than 5 million Americans are living with the disease, and that number could rise to 16 million by 2050.

Explore further: Alzheimer's disease might be a 'whole body' problem

More information: Steven Deleye et al, Evaluation of Small-Animal PET Outcome Measures to Detect Disease Modification Induced by BACE Inhibition in a Transgenic Mouse Model of Alzheimer Disease, Journal of Nuclear Medicine (2017). DOI: 10.2967/jnumed.116.187625

Related Stories

Alzheimer's disease might be a 'whole body' problem

October 31, 2017
Alzheimer's disease, the leading cause of dementia, has long been assumed to originate in the brain. But research from the University of British Columbia and Chinese scientists indicates that it could be triggered by breakdowns ...

Steering an enzyme's 'scissors' shows potential for stopping Alzheimer's disease

July 19, 2017
The old real estate adage about "location, location, location" might also apply to the biochemical genesis of Alzheimer's disease, according to new research from the University of British Columbia.

BACE-Inhibitor successfully tested in Alzheimer's animal model

July 28, 2017
The protein amyloid beta is believed to be the major cause of Alzheimer's disease. Substances that reduce the production of amyloid beta, such as BACE inhibitors, are therefore promising candidates for new drug treatments. ...

Single dual time-point PET scan identifies dual Alzheimer's biomarkers

June 14, 2017
More people die of Alzheimer's disease than prostate and breast cancer combined. Identifying the disease before major symptoms arise is critical to preserving brain function and helping patients maintain quality of life. ...

Team finds regulator of amyloid plaque buildup in Alzheimer's disease

January 23, 2014
Scientists from the Florida campus of The Scripps Research Institute have identified a critical regulator of a molecule deeply involved in the progression of Alzheimer's disease.

Brain enzyme is double whammy for Alzheimer's disease

August 20, 2012
The underlying causes of Alzheimer's disease are not fully understood, but a good deal of evidence points to the accumulation of β-amyloid, a protein that's toxic to nerve cells. β-amyloid is formed by the activity ...

Recommended for you

Many cases of dementia may arise from non-inherited DNA 'spelling mistakes'

October 15, 2018
Only a small proportion of cases of dementia are thought to be inherited—the cause of the vast majority is unknown. Now, in a study published today in the journal Nature Communications, a team of scientists led by researchers ...

Scientists create new map of brain region linked to Alzheimer's disease

October 8, 2018
Curing some of the most vexing diseases first requires navigating the world's most complex structure—the human brain. So, USC scientists have created the most detailed atlas yet of the brain's memory bank.

Previously unknown genetic aberrations found to be associated with Alzheimer's progression

October 8, 2018
In a large-scale analysis of RNA from postmortem human brain tissue, researchers at the Icahn School of Medicine at Mount Sinai and Columbia University have identified specific RNA splicing events associated with Alzheimer's ...

Periodontal disease bacteria may kick-start Alzheimer's

October 4, 2018
Long-term exposure to periodontal disease bacteria causes inflammation and degeneration of brain neurons in mice that is similar to the effects of Alzheimer's disease in humans, according to a new study from researchers at ...

AI could predict cognitive decline leading to Alzheimer's disease in the next five years

October 4, 2018
A team of scientists has successfully trained a new artificial intelligence (AI) algorithm to make accurate predictions regarding cognitive decline leading to Alzheimer's disease.

Medical-records study links dementia-related brain changes to hospital stays for critical illness

September 27, 2018
Researchers at Johns Hopkins report that a novel analysis of more than a thousand patients adds to evidence that hospitalization, critical illness and major infection may diminish brain structures that are most commonly affected ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.