Xenon gas treatment progresses into drug development

December 5, 2017, University of Turku
Researchers in the xenon study: Timo Laitio, Antti Saraste, Juhani Airaksinen, Risto O. Roine, Olli Arola, Harry Scheinin, Riitta Parkkola and Ruut Laitio. Credit: Pasi Leino

xenon gas was studied at the Intensive Care Unit (ICU) of Turku University Hospital, Finland, in 2009-2014 as a treatment for minimising the damage of cardiac arrest, and now it enters drug development in spring 2018. NeuroproteXeon is advancing the study of xenon in a pivotal phase III trial. An earlier study discovered that xenon protects the white matter in the brain from damage, and the latest research showed that xenon can also protect the heart.

The studies showed that xenon protects the brain when are treated for cardiac arrest. The results of the study were published in the Journal of the American Medical Association in the spring of 2016. In November 2017, a further study was published in the Journal of American College of Cardiology demonstrating that xenon can also protect the heart during the of cardiac arrest patients.

"According to the original publication, patients who inhaled , when administered for 24 hours following a cardiac arrest, had notably less damage in their cerebral white matter than the patients in the control group. In addition, the latest results show that xenon reduces the size of infarct in cardiac arrest and thus protects the heart," summarises the leader of the research group, Docent of the University of Turku Timo Laitio, who is a Specialist in anaesthesiology and intensive care at the ICU of Turku University Hospital.

The research results received a great deal of attention after the publication on the use of xenon gas for neuroprotection following a cardiac arrest. The drug development now moves to phase III where the results are tested on a larger group of patients. With positive results from a pivotal phase III study, marketing authorization from regulatory bodies may be pursued. The phase III trial will be conducted in 30 unique sites in North America, Europe, and Australia.

"The earlier research was pioneering work and started from my original idea. The results we received on the promising protective characteristics of xenon can now be verified in a considerably larger trial with 1,500 patients. The trial will begin in spring 2018 and it investigates whether xenon can be used as a novel treatment in intensive care for the syndrome caused by cardiac arrest, particularly for brain damage and heart injury caused by ," says Dr. Laitio.

Dr. Laitio is one of the five members of the Trial Executive Committee (TEC) sponsored by NeuroproteXeon.

"We will conduct the observation protocol of the phase III trial according to our own research model. The TEC is responsible for the realisation of and reporting on the project. In addition to the clinical trial, approximately 200 patients will undergo head MRI in approximately ten facilities. Together with the research group lead by Professor Louis Puybasset, we are responsible for the neuroradiology section of the study."

Bill Stoll, Vice President of Regulatory & Quality at NeuroproteXeon added, "The cytoprotective properties of xenon gas have been well received by regulatory scientist at both FDA and EMA. As such, we have an approved phase III protocol to study xenon in Out of Hospital Cardiac Arrest (OHCA) patients in the US and the EU. We believe that xenon gas combined with the Targeted Temperature Management (TTM) can significantly improve OHCA patients survival and neurofunctional outcomes. NeuroproteXeon will continue to develop xenon gas—XENEX for a multitude of neurologic insult events such as stroke and traumatic brain injuries."

Prolonged oxygen deficiency can cause irreversible brain damage as well as injury to the heart and other organs during cardiac arrest. Before the Finnish xenon study, no researched drug was known to protect the brain from damage during oxygen deficiency.

In the ground breaking clinical study conducted in 2009-2014, ICU patients who were resuscitated after a were given xenon. The main goal of the study was to investigate the effect of xenon on cerebral white matter.

"After the treatment, it was concluded with a head MRI that the patients who received xenon had significantly less damage in their cerebral white matter than those who received ordinary treatment. The study implicates that has a protective effect on humans, as cerebral white matter is especially important for higher intellectual functions," says Dr. Laitio.

Explore further: Treatment lessens cerebral damage following out-of-hospital cardiac arrest

Related Stories

Treatment lessens cerebral damage following out-of-hospital cardiac arrest

March 15, 2016
Among comatose survivors of out-of-hospital cardiac arrest, treatment with inhaled xenon gas combined with hypothermia, compared with hypothermia alone, resulted in less white matter damage; however, there was no significant ...

Xenon gas protects the brain after head injury

September 9, 2014
Treatment with xenon gas after a head injury reduces the extent of brain damage, according to a study in mice.

Bag-mask ventilation fails to improve on endotracheal intubation in cardiac arrest

August 28, 2017
Bag-mask ventilation fails to improve on endotracheal intubation in out-of-hospital cardiac arrest patients, according to late-breaking results from the CAAM trial presented today in a Hot Line LBCT Session at ESC Congress.

Cooling therapy might not help all cardiac arrest patients

October 4, 2016
(HealthDay)—While cooling patients whose hearts stop suddenly outside the hospital may help improve outcomes, it doesn't seem to show the same benefit when cardiac arrest happens in a hospital setting, a new study suggests.

Recommended for you

Exercise may be as effective as prescribed drugs to lower high blood pressure

December 18, 2018
Exercise may be as effective as prescribed drugs to lower high (140 mm Hg) blood pressure, suggests a pooled analysis of the available data, in what is thought to be the first study of its kind, and published online in the ...

Can stem cells help a diseased heart heal itself? Researchers achieve important milestone

December 14, 2018
A team of Rutgers scientists, including Leonard Lee and Shaohua Li, have taken an important step toward the goal of making diseased hearts heal themselves—a new model that would reduce the need for bypass surgery, heart ...

Your weight history may predict your heart failure risk

December 12, 2018
In a medical records analysis of information gathered on more than 6,000 people, Johns Hopkins Medicine researchers conclude that simply asking older adult patients about their weight history at ages 20 and 40 could provide ...

New understanding of mysterious 'hereditary swelling'

December 12, 2018
For the first time ever, biomedical researchers from Aarhus University, Denmark, report cellular defects that lead to a rare disease, hereditary angioedema (HAE), in which patients experience recurrent episodes of swelling ...

Age is the biggest risk for heart disease, but lifestyle and meds have impact

December 12, 2018
Of all the risk factors for heart disease, age is the strongest predictor of potential trouble.

Higher risk of heart attack on Christmas Eve

December 12, 2018
The risk of heart attack peaks at around 10pm on Christmas Eve, particularly for older and sicker people, most likely due to heightened emotional stress, finds a Swedish study in this week's Christmas issue of The BMJ.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.