Advances in brain imaging settle debate over spread of key protein in Alzheimer's

January 5, 2018, University of Cambridge
PET scan of a human brain with Alzheimer's disease. Credit: public domain

Recent advances in brain imaging have enabled scientists to show for the first time that a key protein which causes nerve cell death spreads throughout the brain in Alzheimer's disease - and hence that blocking its spread may prevent the disease from taking hold.

An estimated 44 million people worldwide are living with Alzheimer's disease, a disease whose symptoms include , changes in behaviour and progressive loss of independence. These symptoms are caused by the build-up in the of two abnormal proteins: amyloid beta and tau. It is thought that amyloid beta occurs first, encouraging the appearance and spread of tau - and it is this latter protein that destroys the nerve cells, eating away at our memories and cognitive functions.

Until a few years ago, it was only possible to look at the build-up of these proteins by examining the brains of Alzheimer's patients who had died, post mortem. However, recent developments in positron emission tomography (PET) scanning have enabled scientists to begin imaging their build-up in patients who are still alive: a patient is injected with a radioactive ligand, a tracer molecule that binds to the target (tau) and can be detected using a PET scanner.

In a study published today in the journal Brain, a team led by scientists at the University of Cambridge describe using a combination of imaging techniques to examine how patterns of tau relate to the wiring of the brain in 17 patients with Alzheimer's disease, compared to controls.

Quite how tau appears throughout the brain has been the subject of speculation among scientists. One hypothesis is that harmful tau starts in one place and then spreads to other regions, setting off a chain reaction. This idea - known as 'transneuronal spread' - is supported by studies in mice. When a mouse is injected with abnormal human tau, the protein spreads rapidly throughout the brain; however, this evidence is controversial as the amount of tau injected is much higher relative to brain size compared to levels of tau observed in human brains, and the protein spreads rapidly throughout a mouse's brain whereas it spreads slowly throughout a human brain.

There are also two other competing hypotheses. The 'metabolic vulnerability' hypothesis says that tau is made locally in nerve cells, but that some regions have higher metabolic demands and hence are more vulnerable to the protein. In these cases tau is a marker of distress in cells.

The third hypothesis, 'trophic support', also suggests that some brain regions are more vulnerable than others, but that this is less to do with metabolic demand and more to do with a lack of nutrition to the region or with gene expression patterns.

Thanks to the developments in PET scanning, it is now possible to compare these hypotheses.

"Five years ago, this type of study would not have been possible, but thanks to recent advances in imaging, we can test which of these hypotheses best agrees with what we observe," says Dr Thomas Cope from the Department of Clinical Neurosciences at the University of Cambridge, the study's first author.

Dr Cope and colleagues looked at the functional connections within the brains of the Alzheimer's patients - in other words, how their brains were wired up - and compared this against levels of tau. Their findings supported the idea of transneuronal spread, that tau starts in one place and spreads, but were counter to predictions from the other two hypotheses.

"If the idea of transneuronal spread is correct, then the areas of the brain that are most highly connected should have the largest build-up of tau and will pass it on to their connections. It's the same as we might see in a flu epidemic, for example - the people with the largest networks are most likely to catch flu and then to pass it on to others. And this is exactly what we saw."

Professor James Rowe, senior author on the study, adds: "In Alzheimer's disease, the most common brain region for tau to first appear is the entorhinal cortex area, which is next to the hippocampus, the 'memory region'. This is why the earliest symptoms in Alzheimer's tend to be memory problems. But our study suggests that tau then spreads across the brain, infecting and destroying as it goes, causing the patient's symptoms to get progressively worse."

Confirmation of the transneuronal spread hypothesis is important because it suggests that we might slow down or halt the progression of Alzheimer's disease by developing drugs to stop tau from moving along neurons.

The same team also looked at 17 patients affected by another form of dementia, known as progressive supranuclear palsy (PSP), a rare condition that affects balance, vision and speech, but not memory. In PSP patients, tau tends to be found at the base of the brain rather than throughout. The researchers found that the pattern of tau build-up in these patients supported the second two hypotheses, metabolic vulnerability and trophic support, but not the idea that tau spreads across the brain.

The researchers also took patients at different stages of disease and looked at how tau build-up affected the connections in their brains.

In Alzheimer's patients, they showed that as tau builds up and damages networks, the connections become more random, possibly explaining the confusion and muddled memories typical of such patients.

In PSP, the 'highways' that carry most information in healthy individuals receives the most damage, meaning that information needs to travel around the brain along a more indirect route. This may explain why, when asked a question, PSP may be slow to respond but will eventually arrive at the correct answer.

Explore further: Here's what we think Alzheimer's does to the brain

More information: Thomas E Cope et al, Tau burden and the functional connectome in Alzheimer's disease and progressive supranuclear palsy, Brain (2017). DOI: 10.1093/brain/awx347

Related Stories

Here's what we think Alzheimer's does to the brain

November 6, 2017
Around 50m people worldwide are thought to have Alzheimer's disease. And with rapidly ageing populations in many countries, the number of sufferers is steadily rising.

Higher brain glucose levels may mean more severe Alzheimer's

November 6, 2017
For the first time, scientists have found a connection between abnormalities in how the brain breaks down glucose and the severity of the signature amyloid plaques and tangles in the brain, as well as the onset of eventual ...

Dementia plaques attack language center of brain

March 7, 2016
The recent ability to peer into the brain of living individuals with a rare type of language dementia, primary progressive aphasia (PPA), provides important new insights into the beginning stages of this disease—which results ...

Study shows Alzheimer's disease may spread by 'jumping' from one brain region to another

February 1, 2012
For decades, researchers have debated whether Alzheimer's disease starts independently in vulnerable brain regions at different times, or if it begins in one region and then spreads to neuroanatomically connected areas. A ...

Spread of tau protein measured in the brains of Alzheimer's patients

May 16, 2017
In a new study presented in Molecular Psychiatry, researchers at Karolinska Institutet have measured how deposits of the pathological protein tau spread through the brain over the course of Alzheimer's disease. Their results ...

Study suggests possible new target for treating and preventing Alzheimer's

December 1, 2016
A new scientific discovery may provide a future avenue for treatment and prevention of Alzheimer's disease.

Recommended for you

Rocky start for Alzheimer's drug research in 2018

January 19, 2018
The year 2018, barely underway, has already dealt a series of disheartening blows to the quest for an Alzheimer's cure.

Alzheimer's disease: Neuronal loss very limited

January 17, 2018
Frequently encountered in the elderly, Alzheimer's is considered a neurodegenerative disease, which means that it is accompanied by a significant, progressive loss of neurons and their nerve endings, or synapses. A joint ...

Anxiety: An early indicator of Alzheimer's disease?

January 12, 2018
A new study suggests an association between elevated amyloid beta levels and the worsening of anxiety symptoms. The findings support the hypothesis that neuropsychiatric symptoms could represent the early manifestation of ...

One of the most promising drugs for Alzheimer's disease fails in clinical trials

January 11, 2018
To the roughly 400 clinical trials that have tested some experimental treatment for Alzheimer's disease and come up short, we can now add three more.

Different disease types associated with distinct amyloid-beta prion strains found in Alzheimer's patients

January 9, 2018
An international team of researchers has found different disease type associations with distinct amyloid-beta prion strains in the brains of dead Alzheimer's patients. In their paper published in Proceedings of the National ...

Advances in brain imaging settle debate over spread of key protein in Alzheimer's

January 5, 2018
Recent advances in brain imaging have enabled scientists to show for the first time that a key protein which causes nerve cell death spreads throughout the brain in Alzheimer's disease - and hence that blocking its spread ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

LaPortaMA
not rated yet Jan 06, 2018
It's going to end up not mattering, as it's an effect, not a cause.
medicalforum
not rated yet Jan 06, 2018
Yes Yes....LaPortaMa how you think ... Can we treat this ?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.