Cellular barcoding helps scientists understand the behavior of stem cells

January 3, 2018, NIH/National Heart, Lung and Blood Institute
Landscape of the lineage fate (natural environment) of unperturbed haematopoiesis (the process of mature blood and immune cell production). Credit: the Stem Cell Program, Boston Children's Hospital.

By tagging bone marrow cells of mice with a genetic label, or barcode, researchers were able to track and describe the family tree of individual blood cells as they form in their natural environment. The scientists discovered that these cells regenerate differently than their counterparts do after a blood cell transplant, according to a study published Jan. 3 in Nature and funded by the National Heart, Lung and Blood Institute (NHLBI), part of the National Institutes of Health.

"The findings of this research, if applicable to humans, will have implications for blood cell transplantation, and for clinical and research methods using blood cells, such as gene therapy or gene editing," said John W. Thomas, Ph.D., Stem Cell and Cell-based Therapy Coordinator at NHLBI.

This study moves research a step further towards the development of blood regeneration therapies, but the researchers believe it is also applicable to a variety of cells and will yield insights about regenerating diseased or damaged tissues.

"Our results show that and their less pluripotent descendants, blood progenitors, behave somewhat differently when studied without removing them from their native environment versus when studied in a laboratory or in transplantation; leading to differences in the type of blood lineages they make," said study's first author Alejo Rodriguez Fraticelli, Ph.D., from Harvard Stem Cell Institute, at the Boston Children's Hospital.

Due to the lack of appropriate tools to study how blood forms in the natural environment of the body, the majority of studies about where individual blood cells come from have been done after a transplant. In that context, the transplanted cells would have been "perturbed," or removed from their natural environment. According to the researchers, the current models are more likely to represent a roadmap of lineage potential for the blood cells' natural offspring.

For Rodriguez Fraticelli, this highlights the importance of studying blood regeneration in its native context. "Moving forward, we need to come up with methods to better predict what types of cells will be the most optimal for therapy, for instance in reprogramming cells, and editing," he said.

In the study, researchers tagged using a transposon, a piece of genetic code that can jump to a random point in DNA when exposed to an enzyme called transposase, to track blood progenitors and during the natural, unperturbed process of blood regeneration.

The research provides evidence for a substantially revised roadmap for normal blood regeneration or blood production in the natural environment; and highlights how in those conditions and manifest unique properties.

Explore further: Blood vessel cells improve the conversion of pluripotent stem cells to blood lineages

More information: Alejo E. Rodriguez-Fraticelli et al. Clonal analysis of lineage fate in native haematopoiesis, Nature (2018). DOI: 10.1038/nature25168

Related Stories

Blood vessel cells improve the conversion of pluripotent stem cells to blood lineages

February 9, 2015
Hematopoietic stem cells (HSCs) can differentiate into all of the different types of cells that comprise the blood and immune cell lineages. HSC transplantation is the only effective treatment for certain blood disorders; ...

Blood study insight could improve stem cell therapy success

May 12, 2017
Researchers have pinpointed a key enzyme that is vital for the production of fresh blood cells in the body. The enzyme is essential for the survival of specialised stem cells that give rise to new blood cells, the study found. ...

Approaching a decades-old goal: Making blood stem cells from patients' own cells

May 17, 2017
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body. The advance, published ...

Blood stem cells study could pave the way for new cancer therapy

March 10, 2016
People with leukaemia could be helped by new research that sheds light on how the body produces its blood supply.

Recommended for you

Discovery of inner ear function may improve diagnosis of hearing impairment

October 15, 2018
Results from a research study published in Nature Communications show how the inner ear processes speech, something that has until now been unknown. The authors of the report include researchers from Linköping University, ...

Team's study reveals hidden lives of medical biomarkers

October 12, 2018
What do medical biomarkers do on evenings and weekends, when they might be considered off the clock?

Widespread errors in 'proofreading' cause inherited blindness

October 12, 2018
Mistakes in "proofreading" the genetic code of retinal cells is the cause of a form of inherited blindness, retinitis pigmentosa (RP) caused by mutations in splicing factors.

Researchers create a functional salivary gland organoid

October 11, 2018
A research group led by scientists from Showa University and the RIKEN Center for Biosystems Dynamics Research in Japan have, for the first time, succeeded in growing three-dimensional salivary gland tissue that, when implanted ...

Lassa fever vaccine shows promise and reveals new test for immunity

October 11, 2018
Lassa fever belongs to the same class of hemorrhagic fevers as Ebola. Like Ebola, it has been a major health threat in Western Africa, infecting 100,000-300,000 people and killing 5,000 per year. A new vaccine against both ...

Genetically engineered 3-D human muscle transplant in a murine model

October 10, 2018
A growing need for tissues and organs in surgical reconstruction is addressed by the promising field of tissue engineering. For instance, muscle atrophy results from severe traumatic events including deep burns and cancer, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.