Dengue takes low and slow approach to replication

January 11, 2018, Duke University
These cultured cells include one (center) that is infected with a common strain of dengue virus. The genomic material of the virus is highlighted in magenta, and is localized to an area in the host cell where a specialized structure called the endoplasmic reticulum resides. Credit: Jessica Child

A new study reveals how dengue virus manages to reproduce itself in an infected person without triggering the body's normal defenses. Duke researchers report that dengue pulls off this hoax by co-opting a specialized structure within host cells for its own purposes, like a lazy roommate sneaking bits of his laundry into the communal wash.

Unlike other viruses that flagrantly disrupt the functions of the in favor of their own needs, dengue appears to be more subtle. It slowly and surreptitiously takes over an accordion-shaped structure inside the cell called the endoplasmic reticulum, the production site for a small subset of host proteins, and steers clear of the larger fluid-filled space of the cell called the cytosol, where most cellular proteins are manufactured.

"It is a remarkably clever thing for a mere 10 kilobases of genetic information," said Christopher V. Nicchitta, Ph.D., senior study author and professor of cell biology at Duke University School of Medicine. "The takes over the machinery and makes a ton of itself, but so slowly and inefficiently that it doesn't set off any of the sensors the uses to detect when something is awry."

The study, which appeared January 10 in the Journal of Virology, could point to new strategies to thwart the mosquito-transmitted virus.

According to the World Health Organization, approximately half of the world's population is at risk of dengue and each year, about 96 million people are sickened by it. No specific treatment for currently exists. Decades of vaccine research have been met with disappointment, and recent reports indicate that a new vaccine for dengue could actually worsen the disease rather than prevent it.

"If you can't make a vaccine, the approach you are left with involves understanding the precise molecular details of the life cycle of these viruses and how they are able to secure and manipulate the host machinery, so you can identify potential drug targets," said Nicchitta. "It is a more difficult path, but we are beginning to map it out."

Viruses like dengue are curious entities that exist in a realm between the living and the dead. Though they possess a few hallmarks of life—like proteins and genetic material (DNA or RNA)—they are missing a key one: the ability to reproduce. That's where host cells come in. Shortly after a virus infects a living cell, it taps into the host's replication machinery to make more copies of itself. In the case of dengue, one infected host cell can churn out as many as 10,000 viral offspring.

In this study, Nicchitta and his colleagues infected tissue culture cells with a common strain of dengue virus. They then sorted out the cell contents to focus on the two areas where proteins are typically synthesized, the endoplasmic reticulum and the neighboring cytosol. Using advanced molecular techniques, the researchers mapped out the location of the tiny factories known as ribosomes that produce proteins, as well as the RNA template that provides a blueprint for their production.

They found that all the action took place on the surface of the endoplasmic reticulum. The entire genome of the is translated in one fell swoop, and then cut up into ten separate proteins. Adding such a complex product to the workload of the would typically set off its stress sensors. But the researchers discovered that the viral RNA template was translated into in such an inefficient, lackadaisical manner, that it didn't trip those alarms.

"There are features of the RNA that makes it inefficiently translated, so it doesn't turn on these stress pathways," Nicchitta said. "Dengue keeps the host cells happy as long as it can. At some point it does gradually overburden the system and the will die, but by then the virus has already made tens of thousands of copies of itself."

Nicchitta is currently trying to pinpoint which features of —its sequence or structure, or both—underlie the slow and steady approach. It may sound counterintuitive, but he says that if the virus were translated more efficiently, it could no longer hide in plain sight. The host cell would notice, and the jig would be up.

Explore further: New dengue vaccine could worsen disease in some people

More information: David W. Reid et al, Dengue virus selectively annexes endoplasmic reticulum-associated translation machinery as a strategy for co-opting host cell protein synthesis, Journal of Virology (2018). DOI: 10.1128/JVI.01766-17

Related Stories

New dengue vaccine could worsen disease in some people

November 30, 2017
Drugmaker Sanofi says that its dengue vaccine, the world's first, should only be given to people who have previously been sickened by the virus, according to new long-term data.

Drug blocks Zika, other mosquito-borne viruses in cell cultures

December 12, 2017
If there was a Mafia crime family of the virus world, it might be flaviviruses.

T cell-inducing dengue vaccines may better protect children of vaccinated mothers

December 22, 2017
For a long time, a dengue vaccine was the holy grail in dengue research. Now that a dengue vaccine is finally on the market (Sanofi's Dengvaxia), other issues have arisen, such as what happens in the babies of vaccinated ...

Recommended for you

Malaria study reveals gene variants linked to risk of disease

April 25, 2018
Many people of African heritage are protected against malaria by inheriting a particular version of a gene, a large-scale study has shown.

Kids with rare rapid-aging disease get hope from study drug

April 24, 2018
Children with a rare, incurable disease that causes rapid aging and early death may live longer if treated with an experimental drug first developed for cancer patients, a study suggests.

Commonly prescribed heartburn drug linked to pneumonia in older adults

April 24, 2018
Researchers at the University of Exeter have found a statistical link between pneumonia in older people and a group of medicines commonly used to neutralise stomach acid in people with heartburn or stomach ulcers. Although ...

Early treatment for leg ulcers gets patients back on their feet

April 24, 2018
Treating leg ulcers within two weeks by closing faulty veins improves healing by 12 per cent compared to standard treatment, according to new findings.

Research finds new mechanism that can cause the spread of deadly infection

April 20, 2018
Scientists at the University of Birmingham have discovered a unique mechanism that drives the spread of a deadly infection.

Selection of a pyrethroid metabolic enzyme CYP9K1 by malaria control activities

April 20, 2018
Researchers from LSTM, with partners from a number of international institutions, have shown the rapid selection of a novel P450 enzyme leading to insecticide resistance in a major malaria vector.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.