Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018 by David Orenstein, Massachusetts Institute of Technology
Credit: Massachusetts Institute of Technology

Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the right after you walk straight down that hallway and make your first left." It also allows your mind to go from merely responding to your environment to consciously asserting your agenda.

"Working allows you to choose what to pay attention to, choose what you hold in mind, and choose when to make decisions and take action," says Earl K. Miller, the Picower Professor in MIT's Picower Institute for Learning and Memory and the Department of Brain and Cognitive Sciences. "It's all about wresting control from the environment to your own self. Once you have something like , you go from being a simple creature that's buffeted by the environment to a creature that can control the environment."

For years Miller has been curious about how working memory—particularly the volitional control of it—actually works. In a new study in the Proceedings of the National Academy of Sciences led by Picower Institute postdoc Andre Bastos, Miller's lab shows that the underlying mechanism depends on different frequencies of brain rhythms synchronizing neurons in distinct layers of the prefrontal cortex (PFC), the area of the brain associated with higher cognitive function. As animals performed a variety of working memory tasks, higher-frequency gamma rhythms in superficial layers of the PFC were regulated by lower-frequency alpha/beta frequency rhythms in deeper cortical layers.

The findings suggest not only a general model of working memory, and the volition that makes it special, but also new ways that clinicians might investigate conditions such as schizophrenia where working memory function appears compromised.

Layers of waves

To conduct the study, Bastos worked from several lines of evidence and with some relatively new technology. Last year, for example, co-author and Picower Institute postdoc Mikael Lundqvist led a study showing that gamma waves perked up in power when sensory (neuroscientists call it "bottom-up") information was loaded into and read out from working memory. In previous work, Miller, Bastos, and their colleagues had found that alpha/beta rhythms appeared to carry "top-down" information about goals and plans within the cortex. Top-down information is what we use to make volitional decisions about what to think about or how to act, Miller says.

The current study benefitted from newly improved multilayer electrode brain sensors that few groups have applied in cognitive, rather than sensory, areas of the cortex. Bastos realized that if he made those measurements, he and Miller could determine whether deep alpha/beta and superficial gamma might interact for volitional control of working memory.

In the lab Bastos and his co-authors, including graduate students Roman Loonis and Simon Kornblith, made multilayer measurements in six areas of the PFC as animals performed three different working memory tasks.

In different tasks, animals had to hold a picture in working memory to subsequently choose a picture that matched it. In another type of task, the animals had to remember the screen location of a briefly flashed dot. Overall, the tasks asked the subjects to store, process, and then discard from working memory the appearance or the position of visual stimuli.

"Combining data across the tasks and the areas does lead to additional weight for the evidence," Bastos says.

A mechanism for working memory

Across all the PFC areas and all tasks, the data showed the same thing: When sensory information was loaded into working memory, the gamma rhythms in superficial layers increased and the alpha/beta rhythms in deep layers that carried the top-down information decreased. Conversely, when deep-layer alpha/beta rhythms increased, superficial layer gamma waned. Subsequent statistical analysis suggested that gamma was being controlled by alpha and beta rhythms, rather than the other way around.

"This suggests mechanisms by which the top-down information needed for volitional control, carried by alpha/beta rhythms, can turn on and off the faucet of bottom-up sensory information, carried by gamma, that reaches working memory and is held in mind," Miller says.

With these insights, the team has since worked to directly test this multilayer, multifrequency model of working memory dynamics more explicitly, with results in press but not yet published.

Charles Schroeder, research scientist and section head in the Center for Biomedical Imaging and Neuromodulation at the Nathan S. Kline Institute for Psychiatric Research, describes two contributions of the study as empirically important.

"First, the paper clearly shows that critical cognitive operations (in this case working memory) are underlain by periodic (oscillatory) network activity patterns in the brain, and that these must be addressed by single trial analysis," Schroeder says. "This provides an important conceptual alternative to the idea that working memory must involve continuous neural activation. Secondly, the findings strongly reinforce the notion that dynamic coupling across high- and low-frequency ranges performs a clear mechanistic function: Lower frequency activity dominant in the lower layers of the prefrontal area network controls the temporal patterning of higher frequency information representation in the superficial layers of the same network of areas. The important conceptual innovation in this case lies in allowing lower frequency control operations to act directly on higher frequency information representation within each cortical area."

Bastos says the model could be useful for generating hypotheses about clinical working memory deficits. Aberrations of deep-layer beta rhythms, for example, could lead to a lessened ability to control working memory for goal-directed action. "In a schizophrenia model or schizophrenia patients, is the interplay between beta and gamma lost?" he asks.

Explore further: A new glimpse into working memory

More information: André M. Bastos el al., "Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory," PNAS (2018).

Related Stories

A new glimpse into working memory

March 17, 2016
When you hold in mind a sentence you have just read or a phone number you're about to dial, you're engaging a critical brain system known as working memory.

Researchers identify neural signatures of explicit and implicit learning

October 12, 2017
Figuring out how to pedal a bike and memorizing the rules of chess require two different types of learning, and now for the first time, researchers have been able to distinguish each type of learning by the brain-wave patterns ...

Working memory positively associated with higher physical endurance and better cognitive function

December 5, 2017
Mount Sinai researchers have found a positive relationship between the brain network associated with working memory—the ability to store and process information relevant to the task at hand—and healthy traits such as ...

Researchers unravel new insights into how the brain beats distractions to retain memories

October 31, 2017
Researchers from the National University of Singapore (NUS) have recently discovered a mechanism that could explain how the brain retains working memory when faced with distractions. These findings could endow cognitive flexibility ...

Neurons in the brain tune into different frequencies for different spatial memory tasks

April 17, 2014
Your brain transmits information about your current location and memories of past locations over the same neural pathways using different frequencies of a rhythmic electrical activity called gamma waves, report neuroscientists ...

How brain waves guide memory formation

February 23, 2015
Our brains generate a constant hum of activity: As neurons fire, they produce brain waves that oscillate at different frequencies. Long thought to be merely a byproduct of neuron activity, recent studies suggest that these ...

Recommended for you

A molecular key for delaying the progression of multiple sclerosis is found

July 23, 2018
Multiple sclerosis (MS) is an autoimmune disease that attacks and destroys the myelin sheath that insulates nerve cells. Current treatment is based on modulating the activity of the immune system or preventing immune cells ...

Monkey studies reveal possible origin of human speech

July 23, 2018
Most animals, including our primate cousins, communicate: they gesture, grimace, grunt, and sing. As a rule, however, they do not speak. So how, exactly, did humans acquire their unique talent for verbal discourse? And how ...

A peek into the interplay between sleep and wakefulness

July 20, 2018
Sleep is an autonomic process and is not always under our direct, voluntary control. Awake or asleep, we are basically under the regulation of two biological processes: sleep homeostasis, commonly known as 'sleep pressure', ...

Paralyzed mice with spinal cord injury made to walk again

July 19, 2018
Most people with spinal cord injury are paralyzed from the injury site down, even when the cord isn't completely severed. Why don't the spared portions of the spinal cord keep working? Researchers at Boston Children's Hospital ...

Neural inflammation plays critical role in stress-induced depression

July 19, 2018
A group of Japanese researchers has discovered that neural inflammation caused by the innate immune system plays an unexpectedly important role in stress-induced depression. This insight could potentially lead to the development ...

Scientists uncover the role of a protein in production and survival of myelin-forming cells

July 19, 2018
The nervous system is a complex organ that relies on a variety of biological players to ensure daily function of the human body. Myelin—a membrane produced by specialized glial cells—plays a critical role in protecting ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.