How brain waves guide memory formation

February 23, 2015 by Anne Trafton, Mit News Office

Our brains generate a constant hum of activity: As neurons fire, they produce brain waves that oscillate at different frequencies. Long thought to be merely a byproduct of neuron activity, recent studies suggest that these waves may play a critical role in communication between different parts of the brain.

A new study from MIT neuroscientists adds to that evidence. The researchers found that two regions that are key to learning—the hippocampus and the prefrontal cortex—use two different brain-wave frequencies to communicate as the brain learns to associate unrelated objects. Whenever the brain correctly links the objects, the waves oscillate at a higher frequency, called "beta," and when the guess is incorrect, the waves oscillate at a lower "theta" frequency.

"It's like you're playing a computer game and you get a ding when you get it right, and a buzz when you get it wrong. These two areas of the brain are playing two different 'notes' for correct guesses and wrong guesses," says Earl Miller, the Picower Professor of Neuroscience, a member of MIT's Picower Institute for Learning and Memory, and senior author of a paper describing the findings in the Feb. 23 online edition of Nature Neuroscience.

Furthermore, these oscillations may reinforce the correct guesses while repressing the incorrect guesses, helping the brain learn new information, the researchers say.

Signaling right and wrong

Miller and lead author Scott Brincat, a research scientist at the Picower Institute, examined activity in the brain as it forms a type of memory called explicit memory—memory for facts and events. This includes linkages between items such as names and faces, or between a location and an event that took place there.

During the learning task, animals were shown pairs of images and gradually learned, through trial and error, which pairs went together. Each correct response was signaled with a reward.

As the researchers recorded brain waves in the hippocampus and the prefrontal cortex during this task, they noticed that the waves occurred at different frequencies depending on whether the correct or incorrect response was given. When the guess was correct, the waves occurred in the beta frequency, about 9 to 16 hertz (cycles per second). When incorrect, the waves oscillated in the theta frequency, about 2 to 6 hertz.

Previous studies by MIT's Mark Bear, also a member of the Picower Institute, have found that stimulating neurons in brain slices at beta frequencies strengthens the connections between the neurons, while stimulating the neurons at theta frequencies weakens the connections.

Miller believes the same thing is happening during this learning task.

"When the animal guesses correctly, the brain hums at the correct answer note, and that frequency reinforces the strengthening of connections," he says. "When the animal guesses incorrectly, the 'wrong' buzzer buzzes, and that frequency is what weakens connections, so it's basically telling the brain to forget about what it just did."

The study also highlights the significance of brain waves in cognitive function, which has only recently been discovered by Miller and others.

"Brain waves had been ignored for decades in neuroscience. It's been thought of as the humming of a car engine," Miller says. "What we're discovering through this experiment and others is that these may be the infrastructure that supports neural communication."

Enhancing memory

The researchers are now investigating whether they can speed up learning by delivering noninvasive electrical stimulation that oscillates at beta frequencies when the correct answer is given and at theta frequencies when the incorrect answer is given. "The idea is that you make the correct guesses feel more correct to the brain, and the incorrect guesses feel more incorrect," Miller says.

This form of very low voltage electrical stimulation has already been approved for use in humans.

"This is a technique that people have used in humans, so if it works, it could potentially have clinical relevance for enhancing memory or treating neurological disorders," Brincat says.

Explore further: Brain's motor cortex uses multiple frequency bands to coordinate movement

More information: Nature Neuroscience. DOI: 10.1038/nn.3954

Related Stories

Brain's motor cortex uses multiple frequency bands to coordinate movement

February 21, 2014
Synchrony is critical for the proper functioning of the brain. Synchronous firing of neurons within regions of the brain and synchrony between brain waves in different regions facilitate information processing, yet researchers ...

Synchronized brain waves enable rapid learning

June 12, 2014
The human mind can rapidly absorb and analyze new information as it flits from thought to thought. These quickly changing brain states may be encoded by synchronization of brain waves across different brain regions, according ...

Brain waves encode rules for behavior

November 21, 2012
One of the biggest puzzles in neuroscience is how our brains encode thoughts, such as perceptions and memories, at the cellular level. Some evidence suggests that ensembles of neurons represent each unique piece of information, ...

Neurons in the brain tune into different frequencies for different spatial memory tasks

April 17, 2014
Your brain transmits information about your current location and memories of past locations over the same neural pathways using different frequencies of a rhythmic electrical activity called gamma waves, report neuroscientists ...

High-frequency nerve signals let mice remember how to make the right move

May 30, 2014
Information processing in the brain is complex and involves both the processing of sensory inputs and the conversion of those inputs into behavior. The passing of electrical oscillations between networks of neurons in different ...

Recommended for you

Discovery deepens understanding of brain's sensory circuitry

December 12, 2017
Because they provide an exemplary physiological model of how the mammalian brain receives sensory information, neural structures called "mouse whisker barrels" have been the subject of study by neuroscientists around the ...

Intermittent fasting found to increase cognitive functions in mice

December 12, 2017
(Medical Xpress)—The Daily Mail spoke with the leader of a team of researchers with the National Institute on Aging in the U.S. and reports that they have found that putting mice on a diet consisting of eating nothing every ...

Neuroscientists show deep brain waves occur more often during navigation and memory formation

December 12, 2017
UCLA neuroscientists are the first to show that rhythmic waves in the brain called theta oscillations happen more often when someone is navigating an unfamiliar environment, and that the more quickly a person moves, the more ...

Stuttering: Stop signals in the brain disturb speech flow

December 12, 2017
One per cent of adults and five per cent of children are unable to achieve what most of us take for granted—speaking fluently. Instead, they struggle with words, often repeating the beginning of a word, for example "G-g-g-g-g-ood ...

How Zika virus induces congenital microcephaly

December 12, 2017
Epidemiological studies show that in utero fetal infection with the Zika virus (ZIKV) may lead to microcephaly, an irreversible congenital malformation of the brain characterized by an incomplete development of the cerebral ...

Selecting sounds: How the brain knows what to listen to

December 11, 2017
How is it that we are able—without any noticeable effort—to listen to a friend talk in a crowded café or follow the melody of a violin within an orchestra?

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.