Stem cells used to build bone and fight cancer

January 25, 2018 by Cristy Lytal, University of Southern California
Abigail Zamora will study the cells that cause neuroblastoma, an aggressive cancer that often affects children. Credit: Ed Uthman

This year's Broad Clinical Research Fellows will apply stem cell-based approaches to two prevalent problems: non-healing bone injuries, which affect 5 million Americans each year, and neuroblastoma, the most common solid tumor in children.

Established by The Eli and Edythe Broad Foundation in 2015, the Broad Clinical Research Fellowships enable California-certified clinical scientists to engage in research that accelerates the translation of stem cell-related approaches to treat injury and disease. The fellowships are potentially renewable for a second year.

Abigail Zamora, a general surgery resident at Los Angeles County + USC Medical Center, will study the cancer stem that cause neuroblastoma. For children with high-risk metastatic neuroblastoma, the survival rate is currently less than 50 percent. Zamora hopes to improve this prognosis by understanding the molecular signals that drive cancer stem cells to be aggressive, and interfering with those signals.

Further characterization of the role of cancer stem cells in metastatic neuroblastoma may improve treatment and ultimately survival for children suffering from high-risk disease, according to Zamora.

She will perform this research in the lab of her mentor Eugene S. Kim, attending pediatric surgeon at Children's Hospital Los Angeles and associate professor of surgery at the Keck School of Medicine of USC.

"The high impact nature of this research project coupled with Abby's outstanding work ethic and previous basic science experience make her an ideal Broad Clinical Research Fellow," Kim said. "I am confident she will be successful and, through her efforts, make important contributions to both our understanding of the biology and in neuroblastoma and our approach and implementation of novel targeted therapies."

Bone defects

Hyunwoo "Paco" Kang, an orthopedic surgery resident at the Keck School of Medicine, will use stem cells to treat critical-sized bone defects, or fractures that are too large to heal on their own.

A previous Broad Clinical Fellow, R. Kiran Alluri, genetically modified the stem cells to produce a protein, called , that serves as a signal to encourage the production of bone. Kang will build on this progress by loading genetically modified stem cells onto a 3-D printed scaffold, which he then will surgically implant into the injured femurs of rats. If this approach is successful, it will be a first step toward developing a similar treatment for human patients.

Kang will pursue this project under the guidance of his mentor Jay R. Lieberman, a pioneer in the field of gene therapy for bone repair.

"Paco is an extremely intelligent and hard-working individual," said Lieberman, professor and chairman of the Department of Orthopaedic Surgery at the Keck School, and professor of biomedical engineering at the USC Viterbi School of Engineering. "He is passionate about scientific discovery, and I know he will do an outstanding job on this project. This fellowship should be a springboard for his development as an academic orthopadic surgeon and hopefully provide him with the tools to direct his own research program some day."

According to Andy McMahon, director of the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, surgeon-scientists bring an indispensable perspective to medical research.

"Surgeon-scientists have one foot in the operating room and the other foot in the research lab," McMahon said. "This makes them keenly aware not only of the medical need to find better solutions for patients, but also of the feasibility of applying different therapeutic approaches in a clinical setting. Because of these insights, surgeon-scientists will be critical partners for translating stem cell science into future patient cures."

Explore further: Injured bones reconstructed by gene and stem cell therapies

Related Stories

Injured bones reconstructed by gene and stem cell therapies

May 17, 2017
A Cedars-Sinai-led team of investigators has successfully repaired severe limb fractures in laboratory animals with an innovative technique that cues bone to regrow its own tissue. If found to be safe and effective in humans, ...

Study shows adipose stem cells may be the cell of choice for therapeutic applications

February 24, 2017
An international team of researchers, funded by Morris Animal Foundation, has shown that adipose (fat) stem cells might be the preferred stem cell type for use in canine therapeutic applications, including orthopedic diseases ...

Repair cartilage potentially can heal horribly broken bones

May 11, 2016
Stem cells could one day be stimulated to make a special type of cartilage to help repair large, hard-to-heal bone fractures – a potential boon for doctors treating big-money athletes, USC researchers say.

Gene therapy as a new option for bone defects

December 7, 2012
(Medical Xpress)—Gene therapy involving modified stem cells obtained from fatty tissue and bone marrow could represent a new option for the treatment of severe orthopaedic injuries to the extremities. This treatment has ...

Ground breaking hip and stem cell surgery in Southampton

May 16, 2014
Doctors and scientists in Southampton have completed their first hip surgery with a 3D printed implant and bone stem cell graft.

Genetic factors control regenerative properties of blood-forming stem cells

December 5, 2016
Researchers from the UCLA Department of Medicine, Division of Hematology Oncology and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA have published two studies that define how key ...

Recommended for you

LincRNAs identified in human fat tissue

June 21, 2018
A large team of researchers from the U.S. and China has succeeded in identifying a number of RNA fragments found in human fat tissue. In their paper published in the journal Science Translational Medicine the group describes ...

Scientists solve the case of the missing subplate, with wide implications for brain science

June 21, 2018
The disappearance of an entire brain region should be cause for concern. Yet, for decades scientists have calmly maintained that one brain area, the subplate, simply vanishes during the course of human development. Recently, ...

Key molecule of aging discovered

June 21, 2018
Every cell and every organism ages sooner or later. But why is this so? Scientists at the German Cancer Research Center in Heidelberg have now discovered for the first time a protein that represents a central switching point ...

Compound made inside human body stops viruses from replicating

June 20, 2018
The newest antiviral drugs could take advantage of a compound made not by humans, but inside them. A team of researchers has identified the mode of action of viperin, a naturally occurring enzyme in humans and other mammals ...

Research reveals zero proof probiotics can ease your anxiety

June 20, 2018
If you're expecting probiotics to reduce your anxiety, it might be time to put down that yogurt spoon—or supplement bottle—and call a professional instead.

Long-term estrogen therapy changes microbial activity in the gut, study finds

June 20, 2018
Long-term therapy with estrogen and bazedoxifene alters the microbial composition and activity in the gut, affecting how estrogen is metabolized, a new study in mice found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.