Researchers identify new treatment target for melanoma

January 16, 2018, Perelman School of Medicine at the University of Pennsylvania
GPER. Credit: Penn Medicine

Researchers in the Perelman School of Medicine at the University of Pennsylvania have identified a new therapeutic target for the treatment of melanoma. For decades, research has associated female sex and a history of previous pregnancy with better outcomes after a melanoma diagnosis. Now, a research team from Perelman School of Medicine at the University of Pennsylvania says it may have determined the reason for the melanoma-protective effect. The mechanism is related to a cellular protein called the G protein-coupled estrogen receptor (GPER). When GPER was activated and combined with anti PD-1inhibitor drugs in mouse cancer models, the therapy dramatically extended survival in all animals and completely eliminated the tumor in 50 percent of the mice. Researchers published their findings in the journal eLife today.

Melanoma is the deadliest form of skin cancer, despite accounting for only about one percent of skin cancers overall. Rates of melanoma have been rising for 30 years, and the American Cancer Society estimates there were more than 87,000 new cases in the United States in 2017. Even with recent advances in immunotherapy, the majority of patients with metastatic forms of melanoma will die from their disease.

"In melanoma and many other types of cancer, women have a better prognosis than men, and women with a history of pregnancy seem to have a better prognosis than those women that have never been pregnant" said the study's senior author Todd W. Ridky, MD, PhD, an assistant professor of Dermatology at Penn. "Decades of research certainly suggests that there is something about female sex and pregnancy hormones that helps protect against melanoma, but no one really understood how that might work."

Researchers say the key is GPER, a receptor found on melanocytes, which are pigment-producing cells in the skin. The receptor is normally activated by estrogen, which is higher in females, especially during pregnancy. Activation of GPER likely explains why many women notice that many areas of their skin gets darker during pregnancy. Previous research from the Ridky lab has shown the effects of GPER activation are totally different than the effects of classical estrogen receptor signaling, which is important in breast cancer. The team discovered that melanocytes do not even express the classical estrogen receptor, and that all estrogen effects were the result of GPER.

In melanoma specifically, once GPER is activated, the cancer cell becomes more differentiated. This means it divides less frequently, makes more pigment, and becomes more visible and vulnerable to the natural immune system. This makes it harder for the cancer to become resistant to immunotherapies.

No drugs specifically target GPER, but Ridky and his team used a lab compound called G-1, originally developed by Eric Prossnitz, PhD, at the University of New Mexico Comprehensive Cancer Center, to stimulate GPER in mice, and then used anti-PD-1 inhibitors to treat the melanoma. The approach eliminated the tumors in half of all mice. The authors note that anti-PD-1 inhibitors, when used alone in mice with melanoma, extend survival modestly, but do not completely eliminate tumors, and no animals survive long-term.

"We hope this work inspires other researchers to revisit old ideas of differentiation-based cancer therapies now that immune therapies are available," said the study's lead author Christopher A. Natale, a researcher in Ridky's lab. "It is clear that the future of cancer therapy lies in combination treatments, and differentiation drivers may be a very useful component in future cancer therapy regimens."

As Ridky points out, this represents a unique approach to immunotherapy and in general.

"So much of the cancer field is focused on inhibitors, but in this new treatment approach, we're actually activating something rather than blocking it," Ridky said. "We used a synthetic compound to mimic part of what happens naturally during pregnancy, and as a result, the GPER activator is very well tolerated without any obvious toxic side effects that are common with most drugs."

Ridky also said this approach could be promising beyond .

"This is a receptor that is expressed in many organs, so there's a reasonable expectation that this may work in other tumor types too," Ridky said.

Although researchers did not observe any toxicities from the compound in mice, though they say they plan further toxicity studies before hopefully moving on to human trials.

Explore further: Arthritis drug could help treat advanced skin cancer

More information: Christopher A Natale et al, Activation of G protein-coupled estrogen receptor signaling inhibits melanoma and improves response to immune checkpoint blockade, eLife (2018). DOI: 10.7554/eLife.31770

Related Stories

Arthritis drug could help treat advanced skin cancer

December 19, 2017
Treatment for the most deadly form of skin cancer could be more effective if combined with a well-known drug for rheumatoid arthritis, new research has shown.

Study uncovers new pathways that control skin tanning and lightening

April 26, 2016
When skin cells responsible for pigmentation are exposed to estrogen or progesterone, the cells respond by adjusting their melanin production, resulting in either skin darkening or lightening. Although pregnant women often ...

Scientists identify novel therapeutic targets for metastatic melanoma

November 27, 2017
Mount Sinai researchers have identified novel therapeutic targets for metastatic melanoma, according to a study published in Molecular Cell.

Role of melanoma-promoting protein revealed

December 6, 2017
In a new study, Yale researchers describe the role of a protein that promotes growth of melanoma, the deadliest form of skin cancer.

Link found between estrogens and changes in heart physiology

December 5, 2017
Estrogens are powerful hormones important for the formation and function of the nervous, reproductive and cardiovascular systems.

When healthy cells stimulate the migration of tumor cells

June 15, 2017
Estrogens act as a driving force of both healthy and cancerous mammary cell growth by binding to receptors that include a type named GPER, which is generally located in cell membranes. Recent studies have, however, revealed ...

Recommended for you

New 'SLICE' tool can massively expand immune system's cancer-fighting repertoire

November 15, 2018
Immunotherapy can cure some cancers that until fairly recently were considered fatal. In addition to developing drugs that boost the immune system's cancer-fighting abilities, scientists are becoming expert at manipulating ...

Anti-malaria drugs have shown promise in treating cancer, and now researchers know why

November 15, 2018
Anti-malaria drugs known as chloroquines have been repurposed to treat cancer for decades, but until now no one knew exactly what the chloroquines were targeting when they attack a tumor. Now, researchers from the Abramson ...

Researchers identify a mechanism that fuels cancer cells' growth

November 14, 2018
Scientists at the UCLA Jonsson Comprehensive Cancer Center have identified sodium glucose transporter 2, or SGLT2, as a mechanism that lung cancer cells can utilize to obtain glucose, which is key to their survival and promotes ...

A new approach to detecting cancer earlier from blood tests: study

November 14, 2018
Cancer scientists led by principal investigator Dr. Daniel De Carvalho at Princess Margaret Cancer Centre have combined "liquid biopsy", epigenetic alterations and machine learning to develop a blood test to detect and classify ...

New antibody breakthrough to lead the fight against cancer

November 14, 2018
Scientists at the University of Southampton have developed a new antibody that could hold the key to unlocking cancer's defence against the body's immune system.

Photoacoustic imaging may help doctors detect ovarian tumors earlier

November 14, 2018
Ovarian cancer claims the lives of more than 14,000 in the U.S. each year, ranking fifth among cancer deaths in women. A multidisciplinary team at Washington University in St. Louis has found an innovative way to use sound ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.