Altering Huntington's patients' skin cells into brain cells sheds light on disease

February 5, 2018 by Julia Evangelou Strait, Washington University School of Medicine
Pictured are reprogrammed cells from a 71-year-old patient with Huntington's disease. Originally skin cells, these have been converted into medium spiny neurons, the cell type affected in Huntington's disease. Sampling skin cells from patients and converting them directly into neurons affected by the disorder is a new tool to help understand why nerve cells die in this fatal condition. Credit: Matheus Victor

Scientists at Washington University School of Medicine in St. Louis have transformed skin cells from patients with Huntington's disease into the type of brain cell affected by the disorder. The resulting mass of neurons serves as a new tool to study the degenerative and eventually fatal neurological condition, according to the researchers.

The study, published Feb. 5 in Nature Neuroscience, showed that the ' nerve —converted directly from patients' —exhibited "symptoms" of the disorder, including DNA damage, dysfunctional mitochondria and . Correcting for malfunctioning genes in these reprogrammed neurons prevented the cell death that is characteristic of Huntington's disease, an inherited genetic disorder that causes cognitive decline and involuntary muscle movements. Symptoms typically appear in people with the disease when they are ages 30 to 50 and steadily worsen over time. On average, patients live about 20 years after symptoms begin.

"This is a powerful tool to investigate the reasons why particular brain cells with the disease-associated mutation become sick over time and eventually die," said senior author Andrew S. Yoo, PhD, an assistant professor of developmental biology. "In theory, we could model progression of the disease by reprogramming cells from patients at a range of ages, including before symptoms begin. And if there are drugs or compounds that may help these patients, we can test them first in this system."

Huntington's disease and other inherited brain conditions are challenging to study because it is difficult to obtain samples of neurons from living patients. Seeking the next best thing, scientists have found ways to transform skin cells into brain cells.

Skin cells are easy to collect from patients and share the same genetic blueprint—and disease-causing mutations—as . The researchers, including first author Matheus Victor, PhD, a postdoctoral research associate, set out to generate neurons that would mimic those of adult patients in order to model the onset and progression of Huntington's disease. They achieved this goal with a direct conversion method they developed.

The method allows skin cells to bypass the stem cell stage as they are being reprogrammed into neurons. Passing through a stem cell stage resets the developmental clock to an embryonic-like state, wiping out the age-associated effects of the disorder. But the directly reprogrammed neurons retain their age, along with the problems associated with adult-onset Huntington's disease, according to Yoo and his colleagues.

In the direct reprogramming, the researchers exposed the adult skin cells to a specific mix of signaling molecules the scientists' past research had found would convert healthy skin cells directly into a type of brain cell called medium spiny neurons, without intermediate steps along the way. This signaling cocktail repackages the DNA, folding up the instructions for skin cells and unfurling the instructions for neurons. In this method, the resulting reprogrammed medium spiny neurons retain the patient's chronological age, along with age-associated symptoms of the disorder.

Although other neuronal cell types are affected, medium spiny neurons bear the brunt of the damage caused by Huntington's disease. The genetic error that causes the disease leads a key protein, Huntingtin, to be misshapen and not function properly. As a result, the malfunctioning protein builds up and, by some set of events that remains unknown, eventually kills the cell. Since the neuronal death can be recapitulated in directly reprogrammed patient neurons, Yoo said the new technique offers a way to study the details of how potential therapies—including drugs that are currently being tested in clinical trials—could rescue medium spiny neurons from death.

With a focus on understanding the details of how the disease progresses to cause cell death, Yoo and his colleagues identified another important protein. The protein, called SP9, was known to be important for normal medium spiny neurons, but it had not previously been associated with Huntington's disease. The researchers found significantly less SP9 in the transformed medium spiny neurons from Huntington's patients. They performed an experiment in which they gave back SP9 to the diseased cells and found that returning this protein to the diseased reduced cell death to levels similar to healthy control cells.

"We want to understand what drives the disease progression over time," Yoo said. "Most neurodegenerative disorders worsen over time, so this method of modeling potentially could be applied in other conditions. This technique lets us capture characteristics of the disease at distinct moments in its progression. That's important in understanding what is happening and finding ways to stop it."

Explore further: Human skin cells reprogrammed directly into brain cells

More information: Matheus B. Victor et al. Striatal neurons directly converted from Huntington's disease patient fibroblasts recapitulate age-associated disease phenotypes, Nature Neuroscience (2018). DOI: 10.1038/s41593-018-0075-7

Related Stories

Human skin cells reprogrammed directly into brain cells

October 22, 2014
Scientists have described a way to convert human skin cells directly into a specific type of brain cell affected by Huntington's disease, an ultimately fatal neurodegenerative disorder. Unlike other techniques that turn one ...

Human skin cells transformed directly into motor neurons

September 7, 2017
Scientists working to develop new treatments for neurodegenerative diseases have been stymied by the inability to grow human motor neurons in the lab. Motor neurons drive muscle contractions, and their damage underlies devastating ...

Uncovering the early origins of Huntington's disease

January 29, 2018
With new findings, scientists may be poised to break a long impasse in research on Huntington's disease, a fatal hereditary disorder for which there is currently no treatment.

Swapping sick for healthy brain cells slows Huntington's disease

June 7, 2016
Researchers have successfully reduced the symptoms and slowed the progression of Huntington's disease in mice using healthy human brain cells. The findings, which were published today in the journal Nature Communications, ...

Huntington's disease alters neurons from development

March 21, 2017
Huntington's disease could alter neurons from when they start developing, according to a study conducted by the international HD iPSC Consortium. The study was published in the scientific journal Nature Neuroscience.

Recommended for you

Aggression neurons identified

May 25, 2018
High activity in a relatively poorly studied group of brain cells can be linked to aggressive behaviour in mice, a new study from Karolinska Institutet in Sweden shows. Using optogenetic techniques, the researchers were able ...

The brain's frontal lobe could be involved in chronic pain, according to research

May 25, 2018
A University of Toronto scientist has discovered the brain's frontal lobe is involved in pain transmission to the spine. If his findings in animals bear out in people, the discovery could lead to a new class of non-addictive ...

Doctors fail to flag concussion patients for critical follow-up

May 25, 2018
As evidence builds of more long-term effects linked to concussion, a nationwide study led by scientists at UCSF and the University of Southern California has found that more than half of the patients seen at top-level trauma ...

Study suggests brainwave link between disparate disorders

May 24, 2018
A brainwave abnormality could be a common link between Parkinson's disease, neuropathic pain, tinnitus and depression—a link that authors of a new study suggest could lead to treatment for all four conditions.

Bursts of brain activity linked to memory reactivation

May 24, 2018
Leading theories propose that sleep presents an opportune time for important, new memories to become stabilized. And it's long been known which brain waves are produced during sleep. But in a new study, researchers set out ...

Researchers define molecular basis to explain link between a pregnant mother's nutrition and infant growth

May 24, 2018
For years, pregnant mothers have questioned their nutritional habits: "Will eating more cause my baby to be overweight?" Or, "I'm eating for two, so it won't hurt to have an extra serving, right?"

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.