Mechanism behind autoimmune disorder revealed

February 7, 2018 by Will Doss, Northwestern University
Plasma cells showing accumulation (green) of antibody within cells (red). Credit: Northwestern University

Northwestern Medicine scientists discovered a previously-unknown mechanism of disease behind a specific autoimmune disorder, findings published in the Proceedings of the National Academy of Sciences.

The scientists observed antibodies that targeted phosphatidylethanolamine, an important phosopholipid, from within the endosomes of . This discovery was the first observation of a pathogenic mechanism behind anti-phosphatidylethanolamine (aPE) autoimmunity, an immune system disorder that's been correlated with thrombosis, transplant failure and pregnancy loss.

It was first reported decades ago, but exactly how aPE autoimmunity worked had remained a mystery despite a large body of literature documenting its prevalence, according to Ming Zhao, PhD, associate professor of Medicine in the Division of Cardiology and senior author on the paper.

Autoimmune diseases usually develop when antibodies—proteins which neutralize pathogens—erroneously attack cells while circulating through the bloodstream. To target those cells, the antibodies bind to accessible antigen targets on the exterior surface of cells, but Zhao and other investigators had been unable to identify an accessible target for aPE—until now.

"The discovery was made somewhat by chance—we left a binding study overnight and discovered, to our surprise, that the antigen is accessible after antibodies are internalized into cells," said Zhao, also a member of the Robert H. Lurie Comprehensive Cancer Center.

That internalization happens through the endosome, a part of the cell that samples the external environment and gathers in signaling molecules. In this case, the endosome also draws in the antibodies, making the cells vulnerable.

"Our data demonstrate that this creates an opportunity for anti-PE antibodies that are brought into the cells to bind to the PE in these tiny vesicles and attack the cells from within — a miniature 'Trojan Horse' process," Zhao said. "This causes chaos within the cell, sending it into an inflammatory state, leading to a greater risk of and pregnancy complications."

It's important to note the inflammatory response may be the principal effect of aPE, according to Zhao, because it means anti-inflammatory treatment is likely to be more effective than anti-coagulants.

These novel discoveries shed light on how cellular vulnerability to aPE is mediated and explain some of its clinical symptoms, according to the study. Because endosomes are an integral part of nearly every type of cell, linking the activity of aPE to clinical symptoms will be a priority for scientists in future investigations, Zhao said.

Explore further: Scientists find key to miscarriages in blood clotting disorder

More information: Songwang Hou et al. Early endosome as a pathogenic target for antiphosphatidylethanolamine antibodies, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1714027115

Related Stories

Scientists find key to miscarriages in blood clotting disorder

November 28, 2017
Monash University researchers have potentially shed light on why women with the rare autoimmune disorder Antiphospholipid syndrome (APS) are prone to successive pregnancy losses.

Team engineers anti-inflammatory antibodies that may treat autoimmune disease

December 21, 2017
A team of Massachusetts General Hospital (MGH) investigators has found a way to engineer antibodies within an organism, converting autoantibodies that attack "self" tissues into anti-inflammatory antibodies in animal models ...

Cancer immunotherapy may work in unexpected way

May 18, 2017
Antibodies to the proteins PD-1 and PD-L1 have been shown to fight cancer by unleashing the body's T cells, a type of immune cell. Now, researchers at the Stanford University School of Medicine have shown that the therapy ...

Preventing autoimmune disease after a viral infection

October 2, 2017
The key weapon against viruses and bacteria that invade the body is production of antibodies, which act like guided missiles to attack and neutralize pathogens.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

Recommended for you

Study demonstrates new treatment for severe asthma

May 22, 2018
Researchers from McMaster University and the Firestone Institute for Respiratory Health at St. Joseph's Healthcare Hamilton, together with colleagues at other partnering institutions, have developed a new method to treat ...

Eczema drug effective against severe asthma

May 21, 2018
Two new studies of patients with difficult-to-control asthma show that the eczema drug dupilumab alleviates asthma symptoms and improves patients' ability to breathe better than standard therapies. Dupilumab, an injectable ...

Neuron guidance factor found to play a key role in immune cell function

May 21, 2018
Macrophages are white blood cells involved in a variety of biological functions, from destroying infectious pathogens to repairing damaged tissue. To carry out their different roles, macrophages must first be activated and ...

Immune cells hold promise in slowing down ALS

May 21, 2018
Recent research from Houston Methodist Hospital showed that a new immunotherapy was safe for patients with ALS and also revealed surprising results that could bring hope to patients who have this relentlessly progressive ...

First clues to the causes of multiple sclerosis

May 16, 2018
Multiple sclerosis, which affects one in 1,000 people, is frequently characterised by relapses associated with variable functional impairments including among others vision problems, impairment of locomotor functions or difficulties ...

A high-fiber diet protects mice against the flu virus

May 15, 2018
Dietary fiber increases survival in influenza-infected mice by setting the immune system at a healthy level of responsiveness, according to a preclinical study published May 15th in the journal Immunity. A high-fiber diet ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.