Helpful, hopeful news for bone marrow transplant patients

February 28, 2018, Children's National Medical Center
Kirsten M. Williams, M.D., blood and bone marrow transplant specialist at Children's National Health System and study co-lead author. Credit: Children's National Health System

Leukemia can be a terrifying diagnosis for the more than 60,000 U.S. patients who are told they have this blood cancer every year. But the treatment for this disease can be just as frightening. For patients with certain forms of leukemia, the only chance they have for a cure is to receive a massive dose of radiation and chemotherapy that kills their hematopoietic stem cells (HSCs), the cells responsible for making new blood, and then receive new HSCs from a healthy donor.

While patients are waiting for these new to go to the bone marrow factory and begin churning out new blood cells, patients are left without an immune system. Devoid of working HSCs for two to four weeks—or longer, if a first transplant doesn't take—patients are vulnerable to infections that can be just as deadly as their original cancer diagnosis.

As they wait in the protected confines of a hospital, patients who undergo HSC transplants receive blood tests every day to gauge successful engraftment, searching for the presence of immune cells called neutrophils, explains Kirsten M. Williams, M.D., blood and specialist at Children's National Health System.

"As you head into week three post-transplant and a patient's cell counts remain at zero, everyone starts to get nervous," Dr. Williams says. The longer a patient goes without an immune system, the higher the chance that they'll develop a life-threatening infection. Until recently, Dr. Williams says, there has been no way beyond those daily blood tests to assess whether the newly infused cells have survived and started to grow early healthy cells in the bone marrow, a process called engraftment.

A new study could change that paradigm. Research published online Dec. 13, 2017, by The Lancet Haematology and co-led by Dr. Williams suggests that a new imaging agent can safely show engraftment as early as days after transplant—giving a helpful and hopeful preview to patients and their doctors.

The study evaluated an investigational imaging test called 18F-fluorothymidine (18F-FLT). It's a radio-labeled analogue of thymidine, a natural component of DNA. Studies have shown that this compound is incorporated into just three white blood cell types, including HSCs. Because it's radioactive, it can be seen on various types of common clinical imaging exams, such as positron emission tomography (PET) and computed tomography (CT) scans. Thus, after infusion, the newly infused developing immune system and marrow is readily visible.

To see whether this compound can readily and safely visualize transplanted HSCs, Dr. Williams and colleagues tested it on 23 patients with various forms of high-risk leukemia.

After these patients received total-body irradiation to destroy their own HSCs, they received donor HSCs from relatives or strangers. One day before they were infused with these donor cells, and then at five or nine days, 28 days, and one year after transplantation, the patients underwent imaging with the novel PET/and CT scan imaging platform.

Each of these patients had successful engraftment, reflected in blood tests two to four weeks after their HSC transplants. However, the results of the imaging exams revealed a far more complicated and robust story.

With 18F-FLT clearly visible in the scans, the researchers saw that the cells took a complex journey as they engrafted. First, they migrated to the patients' livers and spleens. Next, they went to the thoracic spine, the axial spine, the sternum, and the arms and legs. By one year, most of the new HSCs were concentrated in the bones that make up the trunk of the body, including the hip, where most biopsies to assess marrow function take place.

Interestingly, notes Dr. Williams, this pathway is the same one that HSCs take in the fetus when they first form. Although experimental model research had previously suggested that transplanted HSCs travel the same route, little was known about whether HSCs in human patients followed suit.

The study also demonstrated that the radiation in 18F-FLT did not adversely affect engraftment. Additionally, images could identify success of their engraftments potentially weeks faster than they would have through traditional tests—a definite advantage to this technique.

"Through the images we took, these patients could see the new cells growing in their bodies," Dr. Williams says. "They loved that."

Besides providing an early heads up about engraftment status, she adds, this technique also could help patients avoid painful bone marrow biopsies to make sure have taken residence in the bones or at the very least help target those biopsies. It also could be helpful for taking stock of HSCs in other conditions, such as aplastic anemia, in which the body's own HSCs fade away. And importantly, if the new healthy cells don't grow, this test could signal this failure to doctors, enabling rapid mobilization of new cells to avert life-threatening infections and help us save lives after transplants at high risk of graft failure.

"What happens with HSCs always has been a mystery," Dr. Williams says. "Now we can start to open that black box."

Explore further: Dose of transplanted blood-forming stem cells affects their behavior

More information: Kirsten M Williams et al, Imaging of subclinical haemopoiesis after stem-cell transplantation in patients with haematological malignancies: a prospective pilot study, The Lancet Haematology (2017). DOI: 10.1016/S2352-3026(17)30215-6

Related Stories

Dose of transplanted blood-forming stem cells affects their behavior

May 25, 2016
Unlike aspirin, bone marrow doesn't come with a neatly printed label with dosage instructions. However, a new study published in Cell Reports provides clues about how the dose of transplanted bone marrow might affect patients ...

Researchers point way to improved stem cell transplantation therapies

September 7, 2017
Researchers in Germany have demonstrated that hematopoietic stem cell (HSC) transplants can be improved by treatments that temporarily prevent the stem cells from dying. The approach, which is described in a paper to be published ...

Blood stem cells study could pave the way for new cancer therapy

March 10, 2016
People with leukaemia could be helped by new research that sheds light on how the body produces its blood supply.

Changing the environment within bone marrow alters blood cell development

February 22, 2017
Researchers at the University of Illinois report they can alter blood cell development through the use of biomaterials designed to mimic characteristics of the bone marrow.

Researchers unlock protein key to harnessing regenerative power of blood stem cells

December 10, 2014
(Medical Xpress)—UCLA scientists have for the first time identified a protein that plays a key role in regulating how blood stem cells replicate in humans.

Out of body experience for stem cells may lead to more successful transplants

August 4, 2011
New research finds that growing blood stem cells in the laboratory for about a week may help to overcome one of the most difficult roadblocks to successful transplantation, immune rejection. The study, published by Cell ...

Recommended for you

LincRNAs identified in human fat tissue

June 21, 2018
A large team of researchers from the U.S. and China has succeeded in identifying a number of RNA fragments found in human fat tissue. In their paper published in the journal Science Translational Medicine the group describes ...

Scientists solve the case of the missing subplate, with wide implications for brain science

June 21, 2018
The disappearance of an entire brain region should be cause for concern. Yet, for decades scientists have calmly maintained that one brain area, the subplate, simply vanishes during the course of human development. Recently, ...

Key molecule of aging discovered

June 21, 2018
Every cell and every organism ages sooner or later. But why is this so? Scientists at the German Cancer Research Center in Heidelberg have now discovered for the first time a protein that represents a central switching point ...

Compound made inside human body stops viruses from replicating

June 20, 2018
The newest antiviral drugs could take advantage of a compound made not by humans, but inside them. A team of researchers has identified the mode of action of viperin, a naturally occurring enzyme in humans and other mammals ...

Research reveals zero proof probiotics can ease your anxiety

June 20, 2018
If you're expecting probiotics to reduce your anxiety, it might be time to put down that yogurt spoon—or supplement bottle—and call a professional instead.

Long-term estrogen therapy changes microbial activity in the gut, study finds

June 20, 2018
Long-term therapy with estrogen and bazedoxifene alters the microbial composition and activity in the gut, affecting how estrogen is metabolized, a new study in mice found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.