Scientists crack structure of enzyme complex linked to cancer

February 7, 2018, University of California - Riverside
Image shows the DNMT3A-DNA complex. A research team led by Jikui Song cracked the crystal structure for DNMT3A-DNA complex. The structure reveals that DNMT3A molecules attack two substrate sites adjacent to each other on the same DNA molecule. DNMT3L (green) is a regulatory protein of DNMT3A. Bp (base pairs) is a unit of length, with one bp corresponding to approximately 3.4 Å of length along the DNA (brown) strand. Credit: Song lab, UC Riverside.

A research team led by a biochemist at the University of California, Riverside has solved the crystal structure for an enzyme that plays a key role in DNA methylation, the process by which methyl groups are added to the DNA molecule.

DNA methylation alters . This fundamental cellular mechanism critically influences plant, animal, and human development. It is known to regulate genome stability and cell differentiation. In humans, errors in methylation have been associated with various diseases, including cancer.

In mammals, DNA methylation is established de novo (afresh) by closely related enzymes, DNMT3A and DNMT3B, during germ cell development and . One difficulty in understanding how de novo DNA methylation works is that the structures of these enzymes are not known.

The UC Riverside-led team has now solved the crystal structure for substrate-bound DNMT3A. This breakthrough reveals how the enzyme recognizes and methylates its substrates—important information for understanding de novo DNA methlylation. A substrate is a material or substance on which an enzyme acts.

"The structure reveals that DNMT3A molecules attack two substrate sites adjacent to each other on the same DNA molecule," said Jikui Song, an associate professor of biochemistry who led the research project. "This now offers us a much clearer view on how de novo DNA methylation takes place. Our work presents the first structural view of de novo DNA methylation and presents a model for how some DNMT3A mutations contribute to cancers, such as acute myeloid leukemia. This study should provide important insights into the function of DNMT3B as well."

Song explained the structural knowledge of DNMT3A will allow scientists to control DNA methylation content, gene expression, and cell differentiation—all of which are linked to diseases and finding cures for them.

"It especially has important implications in cancer therapy in the long term," he said.

Study results appear today in Nature.

The DNMT3A structure that Song's team cracked explains why mammalian DNA methylation predominantly occurs at "CpG dinucleotides"—DNA locations where cytosine nucleotides are next to guanidine nucleotides.

"Before our study, why mammalian DNA methylation mostly occurs at the CpG sites was not understood, and our understanding of de novo DNA methylation was purely based on computational modeling, which cannot reliably explain how DNMT3A works," Song said. "Just how DNMT3A succeeded in binding to its substrate was not understood either. Our structure for DNMT3A-DNA complex addresses all these concerns, offering a far better understanding of how specific DNA methylation patterns are generated."

The study of DNMT3A structure with substrates has long been hindered by the difficulty in producing a stable enzyme-substrate complex.

"To overcome this challenge, we successfully developed a method to trap the reaction intermediate of DNMT3A-substrate complex, and solved the structure by X-ray crystallography," Song said.

He was joined in the study by Zhi-Min Zhang (first author of the research paper), Pengcheng Wang, Yang Yu, Linfeng Gao, Shuo Liu, Debin Ji, and Yinsheng Wang at UCR; and Rui Lu, Dong-Liang Chen, Scott B Rothbart, and co-leader Gang Greg Wang at the University of North Carolina at Chapel Hill. The Song group solved the . The Wang group performed genomic DNA methylation analysis.

Explore further: Important mechanism of epigenetic gene regulation identified

More information: Zhi-Min Zhang et al, Structural basis for DNMT3A-mediated de novo DNA methylation, Nature (2018). DOI: 10.1038/nature25477

Related Stories

Important mechanism of epigenetic gene regulation identified

October 30, 2017
How can defective gene activity leading to cancerbe avoided? Researchers at the University of Zurich have now identified a mechanism by which cells pass on the regulation of genetic information through epigenetic modifications. ...

New computational method reveals chemoresistance drug targets

January 30, 2018
Osaka – In cancer, one of the most important features is the methylation of deoxycytosine to form 5-methylcytosine (5mC). DNA methylation is a process by which methyl groups (structural units of organic compounds consisting ...

Optogenetics used to kick start gene that plays role in neural defects

February 14, 2017
Purdue University and Indiana University School of Medicine scientists were able to force an epigenetic reaction that turns on and off a gene known to determine the fate of the neural stem cells, a finding that could lead ...

Permanent changes in brain genes may not be so permanent after all

January 27, 2014
In normal development, all cells turn off genes they don't need, often by attaching a chemical methyl group to the DNA, a process called methylation. Historically, scientists believed methyl groups could only stick to a particular ...

Recommended for you

Daily low-dose aspirin may be weapon against ovarian cancer

July 20, 2018
(HealthDay)— One low-dose aspirin a day could help women avoid ovarian cancer or boost their survival should it develop, two new studies suggest.

Discovery of kidney cancer driver could lead to new treatment strategy

July 19, 2018
University of North Carolina Lineberger Comprehensive Cancer Center scientists have uncovered a potential therapeutic target for kidney cancers that have a common genetic change. Scientists have known this genetic change ...

High fruit and vegetable consumption may reduce risk of breast cancer, especially aggressive tumors

July 19, 2018
Women who eat a high amount of fruits and vegetables each day may have a lower risk of breast cancer, especially of aggressive tumors, than those who eat fewer fruits and vegetables, according to a new study led by researchers ...

Sunscreen reduces melanoma risk by 40 per cent in young people

July 19, 2018
A world-first study led by University of Sydney has found that Australians aged 18-40 years who were regular users of sunscreen in childhood reduced their risk of developing melanoma by 40 percent, compared to those who rarely ...

Analysis of prostate tumors reveals clues to cancer's aggressiveness

July 19, 2018
Using genetic sequencing, scientists have revealed the complete DNA makeup of more than 100 aggressive prostate tumors, pinpointing important genetic errors these deadly tumors have in common. The study lays the foundation ...

Analytical tool predicts genes that can cause disease by producing altered proteins

July 19, 2018
Predicting genes that can cause disease due to the production of truncated or altered proteins that take on a new or different function, rather than those that lose their function, is now possible thanks to an international ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.