Specific protein may reduce inflammation, improve survival during the flu

February 7, 2018 by Katie Bohn, Pennsylvania State University
The results of the study, published in the journal Respiratory Research, suggest that GM-CSF could be a potential therapeutic strategy for treating the flu. Credit: iStock Photo damedeeso

GM-CSF, a protein that modifies the immune response to the flu, may also help reduce lung inflammation and improve survival during influenza, according to Penn State researchers.

The researchers studied the survival and function of with in the lab. They found that the mice that had been given large amounts of a special cytokine—molecules that warn other cells that there's an infection or other trauma in the body—called GM-CSF, had better survival and than the other mice.

E. Scott Halstead, assistant professor of pediatrics at Penn State College of Medicine, said the results—published in the journal Respiratory Research—suggest that GM-CSF could be a potential therapeutic strategy for treating the flu.

"Influenza can be bad, which this flu season is kind of showing, so we're always trying to find new strategies to deal with it," Halstead said. "Previous research has shown that mice with naturally higher levels of GM-CSF might be protected from the flu. But in this study, we gave the mice GM-CSF after they got the flu, which is more similar to when a patient gets sick and then you do something to help them. Even after they got the virus, it still helped."

While all viruses trigger a cytokine response in the body, Halstead said influenza tends to create a surge in a particular cytokine called type II interferon, which may be why influenza can be worse than other such viruses as rhinovirus or (RSV). Type II interferon is associated with high levels of inflammation in the lungs.

Previous studies demonstrated that mice born with of GM-CSF were naturally protected from influenza, but the researchers wanted to know if introducing GM-CSF after the mice already had the flu was just as effective.

In the study, the researchers used mice born with a special gene that allows them to create GM-CSF in their lungs when given the antibiotic doxycycline. Three days after giving them influenza, the researchers gave the mice a dose of doxycycline, triggering the production of GM-CSF in the mice's lungs.

"Because we waited until the third day, the experiment created a nice model of an inhaled agent like we would give a person with the flu," Halstead said. "Usually, people who get sick won't go to the doctor on that first day of the illness, so we wanted to do something similar with the mice."

The researchers found that the mice with GM-CSF had a better chance of survival than the other mice. At 13 days post-infection, 90 percent of the mice with GM-CSF were still alive versus 50 percent of the mice without.

Halstead said they also examined macrophages—a type of white blood cell found at sites of infection—from the mice's lungs. The researchers sorted the macrophages into different populations and studied the genes the macrophages produced using a technique called RNA sequencing.

"We also saw that even though GM-CSF is thought to cause inflammation, in this study, we saw it doing the opposite," Halstead said. "For whatever reason—we still need to figure out the mechanism—it suppressed the response to type II interferon, which usually causes a lot of inflammation in the lungs. The GM-CSF was actually knocking down that response."

The researchers said that because they still saw the GM-CSF benefiting the mice several days after the mice had been infected with the flu, there is potential for using GM-CSF to treat flu and pneumonia in humans.

"Many anti-virals out there, like Tamiflu, can only be given in the first day or two of infection. Most of the time, by the time you see the patient, it's too late for those medications," Halstead said. "Our study showed that with GM-CSF, there might be a larger window of time."

Halstead said that he's currently working with the U.S. Food and Drug Administration to get approval to begin a clinical trial to test the treatment in people with viral pneumonia. He said future studies could also examine the mechanisms behind how GM-CSF suppresses the response to type II interferon.

Explore further: Interferon shows promise as flu therapy

Related Stories

Interferon shows promise as flu therapy

September 7, 2016
A molecule the body produces naturally in response to virus infection could be a viable flu treatment in the future, suggest researchers at the Francis Crick Institute in London.

Lactic acid bacteria can protect against Influenza A virus, study finds

December 13, 2017
Lactic acid bacteria, commonly used as probiotics to improve digestive health, can offer protection against different subtypes of influenza A virus, resulting in reduced weight loss after virus infection and lower amounts ...

New study explains why MRSA 'superbug' kills influenza patients

August 15, 2016
Researchers have discovered that secondary infection with the Methicillin-resistant Staphylococcus aureus (MRSA) bacterium (or "superbug") often kills influenza patients because the flu virus alters the antibacterial response ...

Smoking may cause inflammatory bowel disease

October 31, 2017
A new study shows a direct effect of cigarette smoke on intestinal inflammation for the first time. Researchers in South Korea report that exposing mice to cigarette smoke results in colitis, an inflammation of the colon ...

Infants born preterm may lack key lung cells later in life

June 9, 2017
Mice born into an oxygen-rich environment respond worse to the flu once fully grown due to an absence of certain lung cells, a discovery that provides a potential explanation for preterm infants' added susceptibility to influenza ...

Red ginseng, vitamin C may increase immune cell activity

March 3, 2016
(HealthDay)—Red ginseng and vitamin C enhance immune cell activation and suppress viral infection in mice, according to an experimental study published online Feb. 21 in the Journal of Pharmacy and Pharmacology.

Recommended for you

Infants born to obese mothers risk developing liver disease, obesity

November 16, 2018
Infant gut microbes altered by their mother's obesity can cause inflammation and other major changes within the baby, increasing the risk of obesity and non-alcoholic fatty liver disease later in life, according to researchers ...

New study shows NKT cell subsets play a large role in the advancement of NAFLD

November 16, 2018
Since 2015 it has been known that the gut microbiota could have a direct impact on nonalcoholic fatty liver disease (NAFLD), which affects up to 12% of adults and is a leading cause of chronic liver disease. In the November ...

Antibiotic prescribing influenced by team dynamics within hospitals

November 15, 2018
Antibiotic prescribing by doctors is influenced by team dynamics and cultures within hospitals.

Discovery suggests new route to fight infection, disease

November 14, 2018
New research reveals how a single protein interferes with the immune system when exposed to the bacterium that causes Legionnaires' disease, findings that could have broad implications for development of medicines to fight ...

Zika may hijack mother-fetus immunity route

November 14, 2018
To cross the placenta, Zika virus may hijack the route by which acquired immunity is transferred from mother to fetus, new research suggests.

New research aims to help improve uptake of hepatitis C testing

November 14, 2018
New research published in Scientific Reports shows persisting fears about HIV infection may impact testing uptake for the hepatitis C Virus (HCV).

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.