Star-like cells may help the brain tune breathing rhythms

February 7, 2018, National Institutes of Health
NIH study in rats shows that star-shaped brain cells, called astrocytes (red) may play an active role in breathing. Credit: Jeffrey C. Smith lab, NIH/NINDS

Traditionally, scientists thought that star-shaped brain cells called astrocytes were steady, quiet supporters of their talkative, wire-like neighbors, called neurons. Now, an NIH study suggests that astrocytes may also have their say. It showed that silencing astrocytes in the brain's breathing center caused rats to breathe at a lower rate and tire out on a treadmill earlier than normal. These were just two examples of changes in breathing caused by manipulating the way astrocytes communicate with neighboring cells.

"For decades we thought that breathing was exclusively controlled by neurons in the brain. Our results suggest that astrocytes actively help control the rhythm of breathing," said Jeffrey C. Smith, Ph.D., senior investigator at the NIH's National Institute of Neurological Disorders and Stroke (NINDS) and a senior author of the study published in Nature Communications. "These results add to the growing body of evidence that is changing the way we think about astrocytes and how the brain works."

Dr. Smith's lab investigates how breathing is controlled by the rhythmic firing of neurons in the preBötzinger complex, the brain's breathing center that his lab helped discover. For this study, his team worked with Alexander Gourine, Ph.D., professor at University College London (UCL), whose lab found that astrocytes in neighboring parts of the brain may regulate breathing by sensing changes in blood carbon dioxide levels.

At least half of the brain is comprised of cells called glia and most of them are astrocytes. Recently scientists have shown that astrocytes may communicate like neurons by shooting off, or releasing, chemical messages, called transmitters, to neighboring cells.

In this study, the scientists tested the role of astrocytes in breathing by genetically modifying the ability of astrocytes in the preBötzinger complex to release transmitters. When they hushed the astrocytes in by reducing transmitter release, the rats breathed and sighed at a lower rate than normal. In contrast, if they made the astrocytes chattier by increasing transmission, the rats breathed at higher resting rates and sighed more often.

The team also tested how silencing astrocytes affected the rats' responses to changes in oxygen and carbon dioxide levels. Although the rats' breathing rate increased when oxygen levels were lower or carbon dioxide levels higher, it was still lower than normal. Silencing astrocytes also decreased the rate at which the rats sighed under lower oxygen levels. Moreover, the rats became exhausted much earlier than normal. They could only run half the distance that normal rats could run on a treadmill before tiring out.

"The primary goal of breathing is the exchange of carbon dioxide and oxygen that is critical for life. Our results support the idea that astrocytes help the brain translate changes in these gases into breathing," said Shahriar Sheikhbahaei, Ph.D., formerly a doctoral student at UCL and participant in the NIH Graduate Partnership Program, and the lead author of the study.

Finally, the team showed that these astrocytes used adenosine triphosphate (ATP) to communicate with other cells in the brain. Inactivating released ATP reduced resting breathing rates and the frequency of sighs under normal and low .

"Our results expand our understanding of how the controls breathing under normal and disease conditions," said Dr. Smith. "We plan to follow this path to understand how astrocytes help control other aspects of ."

Explore further: Brain astrocytes linked to Alzheimer's disease

More information: Shahriar Sheikhbahaei et al, Astrocytes modulate brainstem respiratory rhythm-generating circuits and determine exercise capacity, Nature Communications (2018). DOI: 10.1038/s41467-017-02723-6

Related Stories

Brain astrocytes linked to Alzheimer's disease

November 20, 2017
Astrocytes, the supporting cells of the brain, could play a significant role in the pathogenesis of Alzheimer's disease (AD), according to a new study from the University of Eastern Finland. This is the first time researchers ...

Key component of respiratory center identified

October 5, 2017
Star-shaped cells called astrocytes are much more than simple support cells in the brain. In a new study on mice, researchers at Karolinska Institutet demonstrate that they also play a key part in the respiratory centre of ...

Scientists use gene expression to understand how astrocytes change with age

January 11, 2018
Potentially explaining why even healthy brains don't function well with age, Salk researchers have discovered that genes that are switched on early in brain development to sever connections between neurons as the brain fine-tunes, ...

The veins in your brain don't all act the same

May 9, 2017
Certain blood vessels in the brainstem constrict when blood vessels elsewhere in the body would dilate. And that contrary behavior is what keeps us breathing, according to a new paper by UConn researchers published May 8 ...

Inflamed support cells appear to contribute to some kinds of autism

October 18, 2017
Modeling the interplay between neurons and astrocytes derived from children with Autism Spectrum Disorder (ASD), researchers at University of California San Diego School of Medicine, with colleagues in Brazil, say innate ...

Recommended for you

Protein droplets keep neurons at the ready and immune system in balance

August 15, 2018
Inside cells, where DNA is packed tightly in the nucleus and rigid proteins keep intricate transport systems on track, some molecules have a simpler way of establishing order. They can self-organize, find one another in crowded ...

Self-control develops gradually in adolescent brain

August 15, 2018
Different parts of the brain mature at different times, which may help to explain impulsive behaviors in adolescence, suggest researchers from Penn State and the University of Pittsburgh.

Research reveals that what we see is not always what we get

August 15, 2018
Researchers are helping to explain why some people anticipate and react to fast-moving objects much quicker than others.

New approach to treating chronic itch

August 15, 2018
Researchers at the University of Zurich have discovered a new approach to suppressing itch by targeting two receptors in the spinal cord with the right experimental drug. In a series of experiments in mice and dogs, they ...

Immune cells in the brain have surprising influence on sexual behavior

August 14, 2018
Researchers have found a surprising new explanation of how young brains are shaped for sexual behavior later in life.

Scientists pinpoint brain networks responsible for naming objects

August 14, 2018
Scientists at The University of Texas Health Science Center at Houston (UTHealth) have identified the brain networks that allow you to think of an object name and then verbalize that thought. The study appeared in the July ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.